IRREDUCIBLE LIE ALGEBRAS OF INFINITE TYPE

ROBERT LEE WILSON

Abstract. Let V be a finite dimensional vector space over an algebraically closed field of characteristic $\not\equiv 2, 3, 5$. It is shown that if $L \subseteq \mathfrak{gl}(V)$ is an irreducible Lie algebra of infinite type then either $L = \mathfrak{gl}(V)$, $L = \mathfrak{sl}(V)$, $\dim V = 2r \geq 4$ and $L = \mathfrak{sp}(V)$, $\dim V = 2r \geq 4$ and $L = \mathfrak{csp}(V)$, or there exists $A \in L$ such that $\text{ad } A = 0 = (\text{ad } A)^2$.

As a corollary we obtain E. Cartan's classification of the irreducible Lie algebras of infinite type over \mathbb{C}.

Let L be a Lie algebra of linear transformations of a vector space V. For each nonnegative integer n the nth Cartan prolongation, L_n, is defined inductively by $L_0 = L$ and

$$L_n = \left\{ \phi \in \text{Hom}(V, L_{n-1}) \mid \gamma(x\phi) = x(\gamma \phi) \text{ for all } x, y \in V \right\}$$

for $n \geq 1$. If $L_n \neq 0$ for all $n \geq 0$ then L is said to be of infinite type. The main result of this paper is:

Theorem 1. Let V be a finite dimensional vector space over an algebraically closed field of characteristic $\not\equiv 2, 3, 5$. If L is an irreducible Lie algebra of infinite type then either $L = \mathfrak{gl}(V)$, $L = \mathfrak{sl}(V)$, $\dim V = 2r \geq 4$ and $L = \mathfrak{sp}(V)$, $\dim V = 2r \geq 4$ and $L = \mathfrak{csp}(V)$, or there exists an $A \in L$ such that $\text{ad } A = 0 = (\text{ad } A)^2$.

Now it is easily seen (as in [7]) that if $(\text{ad } A)^2 = 0$ then A belongs to the radical of the Killing form. If $\Phi = \mathbb{C}$ and L is reductive this implies that $\text{ad } A = 0$. Furthermore, it is known (Theorem 1 of [4]) that an irreducible Lie algebra over \mathbb{C} is of infinite type if and only if $L_2 \neq 0$. Thus Theorem 1 implies the following theorem of E. Cartan [1]:

Theorem 2. Let V be a finite dimensional vector space over \mathbb{C} and let L be an irreducible Lie algebra of linear transformations of V such that $L_2 \neq 0$. Then either $L = \mathfrak{gl}(V)$, $L = \mathfrak{sl}(V)$, $\dim V = 2r \geq 4$ and $L = \mathfrak{sp}(V)$, or $\dim V = 2r \geq 4$ and $L = \mathfrak{csp}(V)$.

Theorem 2, which is important in the study of primitive pseudo-groups and infinite Lie algebras of Cartan type, has been proved by several authors ([1], [2], [3], [5], [9]). These proofs have involved considerable use of the classification and representation theory of
semisimple Lie algebras over \mathbb{C} and hence cannot be generalized to fields of prime characteristic. In the proof presented here we use more elementary techniques which are valid over algebraically closed fields of characteristic $\neq 2, 3, 5$.

We will consider the following three conditions on a Lie algebra L of linear transformations of a vector space V:

Condition A. There exists $A \in L$ with rank $A = 1$ and $A^2 \neq 0$.

Condition B. Either $\dim V = 2$ or there exist $A, B \in L$ with rank $A = \text{rank } B = 1$, $\ker A = \ker B$, and $VA \neq VB$.

Condition C. There exists $A \in L$ with $\text{ad } A = (\text{ad } A)^2$.

By Condition $\sim X$ we will mean the negation of Condition X.

Theorem 1 is clearly a consequence of the following two lemmas.

Lemma 1. If Φ is an algebraically closed field of arbitrary characteristic, V is a finite dimensional vector space over Φ, and $L \subseteq \text{gl}(V)$ is a Lie algebra of infinite type then L contains a rank one transformation.

Lemma 2. Let V be a finite dimensional vector space over a field Φ of characteristic $\neq 2, 3, 5$. Let L be an irreducible Lie algebra of linear transformations of V. Assume that L contains a rank one transformation. Then:

(i) If Condition A holds $L = \text{gl}(V)$.

(ii) If Conditions $\sim A$, B, and $\sim C$ hold then $L = \text{sl}(V)$.

(iii) If Conditions $\sim A$, $\sim B$, and $\sim C$ hold then $\dim V = 2r \geq 4$ and $L = \text{sp}(V)$ or $L = \text{csp}(V)$.

It is shown in [2] that if $\Phi = \mathbb{C}$ Lemma 1 is a consequence of Hilbert's Nullstellensatz. The proof given there is in fact independent of the assumption $\Phi = \mathbb{C}$ and could be used to prove our Lemma 1. We will give a somewhat more elementary proof here. Part (i) of Lemma 2 is proved in [6] for the case $\Phi = \mathbb{C}$.

In the proof of Lemma 1 we will need:

Lemma 3. Let Φ be an algebraically closed field of arbitrary characteristic. Let V and W be finite dimensional vector spaces over Φ with $2 \leq \dim V \leq \dim W$. Let T be a subspace of $\text{Hom}(V, W)$ such that $\dim T \geq \dim W$. Then there exist $\phi \in T$ and $v \in V$ such that $\phi \neq 0$, $v \neq 0$, and $\phi v = 0$.

Proof. Suppose $T \subseteq \text{Hom}(V, W)$ is a counterexample to the lemma such that $\dim W$ is minimal among all counterexamples. As T is a counterexample we have, for any nonzero $v \in V$, $\dim W \geq \dim \phi v = \dim T \geq \dim W$. Thus for any $w \in W$ there is a unique $\phi \in T$ such that $\phi v = w$. Then if v_1, v_2 are linearly independent elements of V we can find a basis $\{\psi_1, \ldots, \psi_n\}$ of T such that
For if linearly independent elements \(\psi_1, \cdots, \psi_j \) satisfying (1) have been found for some \(1 \leq j \leq n-1 \) then the minimality of \(\dim W \) implies that \(v_0 \psi_1, \psi_2, \cdots, v_0 \psi_j \). Thus there exists a unique \(\psi_{j+1} \in T \) such that \(\psi_1, \cdots, \psi_{j+1} \) are linearly independent and satisfy (1). Proceeding by induction on \(j \) gives the result. Now there exists \(\lambda \in \Phi \) such that \(\lambda^n - \sum_{i=0}^{n-1} \lambda a_{i+1} = 0 \). Setting \(b_k = \lambda^{n-k} - \sum_{i=0}^{n-k-1} \lambda a_{k+i} \) for \(1 \leq k \leq n-1 \) we see that \(\psi = \psi_n + \sum_{i=1}^{n-1} \psi b_i \in T \) and \((v_2 - \lambda n) \psi = 0 \). This contradicts the choice of \(T \) and proves the lemma.

Proof of Lemma 1. For \(\phi \in L_i \) and \(j \leq i \) define

\[
\text{im}_j(\phi) = \langle v_j(\cdots (v_1(\phi) \cdots) | v_1, \cdots, v_j \in V) \rangle.
\]

Now if \(x \in \ker \phi \) and \(y \in V \) then \(0 = y(x \phi) = x(y \phi) \) so we have \(\ker \phi \subseteq \ker(y \phi) \). Thus if \(\psi \in \text{im}_j(\phi) \) we have \(\ker \psi \supseteq \ker \phi \). Furthermore if \(d_i = \min \{ \text{rank } \phi \mid 0 \neq \phi \in L_i \} \) we have \(d_0 \leq d_1 \leq \cdots \leq \dim V \). Hence there is some integer \(N \) such that \(d_N = d_{N+1} \) for all \(i \geq N \). Now if \(i \geq j \geq 0 \) and \(\phi \in L_{N+i} \) satisfies \(\text{rank } \phi = d_N \) then for \(0 \neq \psi \in \text{im}_j(\phi) \) we have \(\ker \psi \supseteq \ker \phi \) and \(\text{rank } \psi \geq d_N = \text{rank } \phi \). Thus \(\ker \psi = \ker \phi \).

Thus \(\text{im}_j(\phi) \subseteq \text{Hom}(V/\ker \phi, \text{im}_{j+1}(\phi)) \) and \(0 \neq \psi \in \text{im}_j(\phi) \) implies \(\text{rank } \psi = d_N = \dim(V/\ker \phi) \). Thus if \(d_N \geq 2 \), Lemma 3 shows that \(\dim \text{im}_{j+1}(\phi) \leq \dim \text{im}_{j+1}(\phi) - 1 \). Hence \(\dim L_{N-1} \geq \dim \text{im}_{j+1}(\phi) \geq \dim \text{im}_j(\phi) + i \geq i \) for all \(i \geq 0 \). Since \(L_{N-1} \) is finite dimensional this is impossible. Hence \(1 = d_N = d_0 \), proving the lemma.

Proof of Lemma 2. Let \(n = \dim V \). If \(\{x_1, \cdots, x_n\} \) and \(\{y_1, \cdots, y_n\} \) are bases for \(V \) we define elements \(E_{ij} \in \text{gl}(V) \) for \(1 \leq i, j \leq n \) by \(x_k E_{ij} = \delta_{ik} x_j \) and \(y_k F_{ij} = \delta_{kj} y_i \). If \(2k \leq n \) we define \(\sp(x_1, \cdots, x_{2k}) \) to be the Lie algebra of all \(A \in \text{gl}(V) \) such that \(VA \subseteq \langle x_1, \cdots, x_{2k} \rangle, x_i A = 0 \) for all \(r > 2k \), and \(A \) is skew with respect to the skew-symmetric bilinear form defined by \((x_{i+1}, x_j) = \delta_{j,i+1}, (x_{2i+1}, x_j) = -\delta_{j,i+1} \), and \((x_i, x_j) = 0 \) for all \(0 \leq i \leq k - 1, 1 \leq j \leq n \), \(2k < r \leq n \).

We will presently verify the following statements about an irreducible Lie algebra \(L \) of linear transformations of \(V \):

(a) If \(1 \leq k < n \) and \(E_{ii} \in L \) for all \(1 \leq i \leq k \) then there is a basis \(\{y_1, \cdots, y_n\} \) of \(V \) such that \(F_{ii} \in L \) for all \(1 \leq i \leq k + 1 \).

(b) If \(1 \leq k < n \), \(E_{ii} \in L \) for all \(1 \leq i \leq n \), and \(E_{ii} \in L \) for all \(1 \leq i \leq k \) then there is a basis \(\{y_1, \cdots, y_n\} \) of \(V \) such that \(F_{ii} \in L \) for all \(1 \leq i \leq n \) and \(F_{ii} \in L \) for all \(1 \leq i \leq k + 1 \).
(c) If \(2 \leq k \leq m \leq n\), \(E_{4i} \in L\) for all \(2 \leq i \leq m\), \(E_{4i} \in L\) for all \(2 \leq i < k\), and \(L\) satisfies Condition \(\sim C\) then there is a basis \(\{y_1, \ldots, y_n\}\) of \(V\) such that \(F_{4i} \in L\) for all \(2 \leq i \leq m\) and \(F_{4i} \in L\) for all \(2 \leq i \leq k\).

(d) If \(3 \leq k < n\) and \(E_{4i}, E_{4j} \in L\) for all \(2 \leq i \leq k\) then there is a basis \(\{y_1, \ldots, y_n\}\) of \(V\) such that \(F_{4i} \in L\) for all \(2 \leq i \leq k+1\) and \(F_{4i} \in L\) for all \(2 \leq i \leq k\).

(e) If \(\text{sp}(x_1, \ldots, x_{2k}) \subseteq L\) where \(\dim V > 2k \geq 2\) and \(L\) satisfies Conditions \(\sim B\) and \(\sim C\) then \(\dim V \geq 2k+2\) and there is a basis \(\{y_1, \ldots, y_n\}\) of \(V\) such that \(\text{sp}(y_1, \ldots, y_{2k+2}) \subseteq L\).

(f) If \(\text{sp}(V) \subseteq L\) and \(L\) satisfies Condition \(\sim B\) then \(L = \text{sp}(V)\) or \(L = \text{csp}(V)\).

Lemma 2 follows immediately from statements (a)-(f). For if Condition \(A\) holds we may choose a basis \(\{x_1, \ldots, x_n\}\) for \(V\) such that \(E_{4i} \in L\). Then by (a), (b), and induction on \(k\) we see that \(L = \text{gl}(V)\), proving (i). If Conditions \(\sim A, \sim B,\) and \(\sim C\) hold we may choose a basis \(\{x_1, \ldots, x_n\}\) of \(V\) such that \(E_{4i} \in L\) and if \(n \geq 3\) we may also arrange that \(E_{4i} \in L\). Then using (c), (d), and induction on \(k\) we see that \(L = \text{sl}(V)\), proving (ii). Finally if Conditions \(\sim A, \sim B,\) and \(\sim C\) hold we may choose a basis \(\{x_1, \ldots, x_n\}\) of \(V\) such that \(E_{4i} \in L\). By (c) we may assume that \(\text{sp}(x_1, x_2) \subseteq L\). Then by (e) and induction on \(k\) we have \(\dim V = 2k \geq 4\) and \(\text{sp}(V) \subseteq L\). Then (f) proves (iii).

We now verify (a)-(f). Throughout we will let \(A = \sum E_{ij}a_{ij}\) where the \(a_{ij} \in \Phi\).

(a): As \(\langle x_1, \ldots, x_k \rangle\) is not an invariant subspace there exists \(A \in L\) such that \(a_{ij} \neq 0\) for some \(1 \leq i \leq k < j \leq n\). We may assume that \(i = 1\) (replacing \(A\) by \(A (\text{ad} E_{1})\) if \(i \neq 1\)) and that \(a_{ij} = 0\) whenever \(r > 1\) or \(j = 1\) (replacing \(A\) by \((A (\text{ad} E_{1}) - A) (\text{ad} E_{1})/2\)). Letting \(\{y_1, \ldots, y_n\}\) be any basis for \(V\) satisfying \(y_i = x_i\) for \(1 \leq i \leq k\), \(y_{k+1} = x_{1} A\), and \(y_j \in (x_{k+1}, \ldots, x_n)\) for \(j > k + 1\) gives the result.

The proof of (b) is similar to that of (a).

(c): First assume that \(\text{ad} E_{1k} = 0\). Then for every \(A\) we have \(0 = A (\text{ad} E_{1k}) = \sum_i (E_{ik}a_{ii} - E_{1i}a_{ki})\). Hence \(a_{ki} = 0\) for all \(i \neq k\) so \(\langle x_k \rangle\) is an invariant subspace, contradicting the irreducibility of \(L\). Hence \(\text{ad} E_{1k} \neq 0\) so by Condition \(\sim C\) we have \((\text{ad} E_{1k})^2 \neq 0\). Since \(A (\text{ad} E_{1k})^2 = E_{1k} (-2a_{k1})\) we have \(E_{1k} \in L\) (ad \(E_{1k}\))^2. Since \(E_{1k}^2 = 0\) we have \((\text{ad} E_{1k})^2 = 0\). Thus Lemma V.8.2 of [8] shows that there exists \(A \in L\) such that \(A (\text{ad} E_{1k}) = 2E_{1k}\) and \(A (\text{ad} E_{1k}) (\text{ad} A) = -2A\). Now

\[
A (\text{ad} E_{1k}) (\text{ad} A) = \sum_{i,j} E_{ij} \left(2a_{k1}a_{ii} - \delta_{i1} \sum_r a_{kr}a_{rij} - \delta_{jk} \sum_r a_{ir}a_{r1}\right).
\]
Thus we have \(a_{kl} = -1 \) and

\[
(2) \quad a_{ij} = -a_{il}a_{kj} + \left(\delta_{ij} \sum_r a_{kr}a_{rj} + \delta_{jk} \sum_r a_{ir}a_{rl} \right) / 2.
\]

Setting \(i = j = 1 \) gives \(0 = \sum_r a_{kr}a_{r1} \). From this, using (2) to substitute for \(a_{rj} \) in \(\sum_r a_{kr}a_{rj} \), we conclude that \(\sum_r a_{kr}a_{rj} = 0 \) for all \(1 \leq j \leq n \) and similarly that \(\sum_r a_{ir}a_{rl} = 0 \) for all \(1 \leq i \leq n \). Thus \(a_{kl} = -a_{il}a_{kj} \) and \(\sum_r a_{kr}a_{rj} = 0 \) for \(1 \leq i, j \leq n \). Now set \(y_1 = x_kA \), \(y_k = x_k \), and \(y_j = x_j + a_{ij}x_k \) for \(j \neq 1, k \). Then \(F_{kl} = A \in L \), \(F_{ik} = -E_{kl} \in L \), and \(F_{ll} = -E_{kl} \in L \) for \(2 \leq i \leq m \), \(i \neq k \). Finally for \(2 \leq i < k \) we have \(F_{ii} = -E_{ii}(ad F_{ii})(ad F_{ii}) - (F_{ii} - F_{kk})a_{ki} \in L \) as required.

(d): As in (a) we may find a basis \(\{ y_1, \ldots, y_n \} \) of \(V \) such that \(F_{ii}, F_{ii} \in L \) for \(1 \leq i \leq k \) and \(A = \sum F_{ij}b_{ij} \in L \) where \(b_{ij} = \delta_{j,k+1} \). Then

\[
F_{1,k+1} = A(ad F_{11})(ad F_{12})(ad F_{13})(ad F_{14}) + (F_{11} - F_{kk})b_{kk} \in L
\]
as required.

(e): It is well known (for example [8, p. 67]) where we take \(x_{2i+1} = v_{i+1} \) and \(x_{2i+2} = v_{r+i+1} \) for \(0 \leq i \leq r - 1 \) that \(\text{sp}(x_1, \ldots, x_r) \) is spanned by the following elements and their transposes: \(E_{2i+1,2i+1}, E_{2i+2,2i+2}, E_{2i+1,2i+2} - E_{2i+2,2i+1} \), and \(E_{2i+1,2i+2} + E_{2i+2,2i+1} \) for \(0 \leq i \neq j \leq r - 1 \). Thus it is easily checked that \(\text{sp}(x_1, \ldots, x_{2k+2}) \) is generated by \(\text{sp}(x_1, \ldots, x_{2k+2}), E_{1,2k+1} - E_{2k+2,2k+1}, \) and \(E_{1,2k+1} - E_{2k+2,2k+2} \).

We first show that for some basis \(\{ y_1, \ldots, y_n \} \) of \(V \) we have \(\text{sp}(y_1, \ldots, y_n) \subseteq L \) and \(A = F_{1,2k+1} + \sum_{i>2k} F_{ij}b_{ij} \in L \) where the \(b_{ij} \) is not an invariant subspace there exists \(A \in L \) such that \(a_{ij} \neq 0 \) for some \(1 \leq i \leq 2k < j \leq n \). We may assume that \(i = 1 \) (replacing \(A \) by \(A(ad E_{11}) \) if \(i = 2 \), by \(A(ad(E_{1,2r+1} - E_{2r+2,2r+1})) \) if \(i = 2r+1 \), and by \(A(ad(E_{1,2r+2} + E_{2r+1,2r+2})) \) if \(i = 2r+2 \), that \(x_1 = 0 \) unless \(r = 1 \), \(s > 2 \) or \(r > 2 \), \(s = 2 \) (replacing \(A \) by \(A(ad E_{11})(ad E_{11}) - (E_{11} - E_{22})(a_{11} - a_{22}) - E_{11}(2a_{11}) \)), and that \(a_{1s} = a_{s1} = 0 \) for \(s \leq k \) (replacing \(A \) by

\[
A - \sum_{i=1}^{k-1} A((ad E_{2i+1,2i+1}))(ad E_{2i+1,2i+1} + (ad E_{2i+1,2i+1}))(ad E_{2i+1,2i+1})).
\]

Then letting \(\{ y_1, \ldots, y_n \} \) be any basis for \(V \) satisfying \(x_i = y_i \) for \(1 \leq i \leq 2k \), \(y_{2k+1} = x_1A \), and \(y_j \in (x_{2k+1}, \ldots, x_n) \) for \(j > 2k + 1 \) gives the result.

Now assume that \(\text{sp}(x_1, \ldots, x_{2k}) \subseteq L \) and that

\[
A = E_{1,2k+1} + \sum_{i>2k} E_{2i}a_{2i} \in L.
\]
We will show that for some basis \(\{ y_1, \ldots, y_n \} \) we have \(\text{sp}(y_1, \ldots, y_{2k}) \subseteq L \) and \(F_{1,2k+1} - F_{2k+2,2} \in L \). If \(a = a_{2k+1,2} \neq 0 \) setting \(y_i = x_i \) for \(1 \leq i \leq 2k + 1 \) and \(y_j = x_j - a^{-1}a_{2k+1,j}x_{2k+1} \) for \(j > 2k + 1 \) we see that \(\text{sp}(y_1, \ldots, y_{2k}) \subseteq L \) and \(A = F_{1,2k+1} - F_{2k+1,2}a \). Then \(F_{2k+1}(\text{ad} \ A)^3 = (F_{1,2k+1} - F_{2k+1,2}a)^3a \in L \) so \(F_{1,2k+1} \in L \). This contradicts Condition \(\sim B \) so we must have \(a = 0 \). Also by Condition \(\sim B \) some \(a_{i,j} \neq 0 \). Hence we can choose \(y_{2k+2} \in \langle x_{2k+2}, \ldots, x_n \rangle \) so that \(y_{2k+2}a = -x_2 \). Then setting \(y_i = x_i \) for \(1 \leq i \leq 2k + 1 \) and choosing \(y_j \in \langle x_{2k+2}, \ldots, x_n \rangle \cap \ker A \) for \(j > 2k + 2 \) so that \(\{ y_1, \ldots, y_n \} \) is a basis for \(V \) we have the result.

Now assume \(\text{sp}(x_1, \ldots, x_{2k}) \subseteq L \) and \(E_{1,2k+1} - E_{2k+2,2} \in L \). We will show that for some basis \(\{ y_1, \ldots, y_n \} \) of \(V \) we have \(\text{sp}(y_1, \ldots, y_{2k}) \subseteq L \) and \(F_{1,2k+1} - F_{2k+2,2} \in L \), thus proving (e). We have \(E_{2k+2,2k+1} = F_{2k+1,2}((E_{1,2k+1} - E_{2k+2,2}))^2/2 \in L \). Then as in (c) we have \(B = \sum b_{ij}e_{ij} \in L \) where \(b_{ij} \in \Phi \) and satisfy \(b_{i,1+1,k+2} = -1, b_{ij} = -x_{2k+1}, y_{2k+1} = x_{2k+1}, \) and \(y_j = x_j + b_{j,k+1}x_{2k+1} \) for \(j \neq 2k+1,2k+2 \) we have \(F_{2k+1,2k+2} = -B \in L, F_{2k+2,2k+1} = E_{2k+2,2k+1} \in L \), and \(F_{1,2k+1} - F_{2k+2,2k+1} = E_{1,2k+1} - E_{2k+2,2k+1}(b_{2k+2,2k+2} - b_{2k+1,1}) \in L \). Also, for \(1 \leq i, j \leq 2k \), we have

\[
F_{ij} = E_{ij} - E_{ij}(\text{ad} F_{2k+1,2k+2})(\text{ad} F_{2k+2,2k+1}) - F_{2k+2,2k+1}b_{ij}.
\]

Hence \(\text{sp}(y_1, \ldots, y_{2k}) \subseteq L \) and \(F_{1,2k+1} - F_{2k+2,2} \in L \) as required.

(f): If \(\dim V = 2k \) and \(\text{sp}(V) \subseteq L \) then for \(0 \leq i \neq j \leq k - 1 \) if \(A \in L \) then

\[
E_{2i+1,2i+1}a_{2i+1,2i+1} + E_{2i+2,2i+2}a_{2i+2,2i+2} = A(\text{ad} E_{2i+1,2i+1})(\text{ad} E_{2i+2,2i+2})(\text{ad} E_{2i+1,2i+1}) \in L.
\]

Then by Condition \(\sim B \) we must have \(a_{2i+1,2i+1} + a_{2i+2,2i+2} = 0 \). Similarly we see that \(a_{2i+1,2i+2} = a_{2i+2,2i+1} = 0 \). Hence \(A = D + S \) where \(S \in \text{sp}(V) \) and \(D = \text{diag} \{ d_1, \ldots, d_{2k} \} \in L \). Now

\[
D(\text{ad}(E_{1,2} - E_{2,2})) = E_{1,2}d_1 - E_{2,2}d_2 \in L.
\]

Thus, again by Condition \(\sim B \), we have \(d_1 - d_2 = 0 \) for all \(0 \leq i \leq k - 1 \). Thus \(2D = I(d_1 + d_2) + E \) where \(E \in \text{sp}(V) \). Thus \(L = \text{sp}(V) \) or \(L = \text{csp}(V) \).

REFERENCES

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY, NEW YORK, NEW YORK 10012