Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A priori bounds for boundary sets


Authors: J. W. Bebernes and Ross Fraker
Journal: Proc. Amer. Math. Soc. 29 (1971), 313-318
MSC: Primary 34.36
DOI: https://doi.org/10.1090/S0002-9939-1971-0277807-9
MathSciNet review: 0277807
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Consider $ y'' = f(t,y,y')$ with boundary conditions $ (0,y(0),y'(0)) \in {S_1},(1,y(1),y'(1)) \in {S_2}$. It is shown that the boundary value problem has a solution for certain boundary sets $ {S_1}$ and $ {S_2}$ which depend on the assumed Nagumo condition for $ f(t,y,y')$.


References [Enhancements On Off] (What's this?)

  • [1] J. Bebernes and R. Wilhelmsen, A technique for solving two dimensional boundary value problems, SIAM J. Appl. Math. 17 (1969), 1060-1064. MR 0259231 (41:3873)
  • [2] -, A general boundary value problem technique, J. Differential Equations 8 (1970), 404-415. MR 0265666 (42:575)
  • [3] -, A remark concerning a boundary value problem (submitted).
  • [4] P. Hartman, Ordinary differential equations, Wiley, New York, 1964. MR 30 #1270. MR 0171038 (30:1270)
  • [5] L. Jackson and G. Klaasen, A variation of the topological method of Ważewski, SIAM J. Appl. Math. (to appear). MR 0279377 (43:5099)
  • [6] L. Markus and N. Amundson, Nonlinear boundary value problems arising in chemical reactor theory, J. Differential Equations 4 (1968), 102-113. MR 39 #7201. MR 0245895 (39:7201)
  • [7] S. Sędziwy, On the existence of a solution of a certain nonlinear boundary value problem (submitted).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34.36

Retrieve articles in all journals with MSC: 34.36


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0277807-9
Keywords: Boundary value problems, nonlinear boundary conditions, Nagumo condition, funnel, funnel cross-section
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society