Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the mean-value property of harmonic functions


Authors: Myron Goldstein and Wellington H. Ow
Journal: Proc. Amer. Math. Soc. 29 (1971), 341-344
MSC: Primary 31.10
DOI: https://doi.org/10.1090/S0002-9939-1971-0279320-1
MathSciNet review: 0279320
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we show that if the areal mean-value theorem holds for a plane domain (subject to a mild regularity condition) for all integrable harmonic functions, then the domain must be a disk. It is also shown that if a plane domain with finite area has at least two boundary components which are continua then the mean-value property cannot hold for the class of all integrable harmonic functions with single-valued harmonic conjugates.


References [Enhancements On Off] (What's this?)

  • [1] L. V. Ahlfors and A. Beurling, Conformal invariants and function-theoretic null-sets, Acta Math. 83 (1950), 101-129. MR 12, 171. MR 0036841 (12:171c)
  • [2] B. Epstein, On the mean-value property of harmonic functions, Proc. Amer. Math. Soc. 13 (1962), 830. MR 25 #4114. MR 0140700 (25:4114)
  • [3] B. Epstein and M. Schiffer, On the mean-value property of harmonic functions, J. Analyse Math. 14 (1965), 109-111. MR 31 #1388. MR 0177124 (31:1388)
  • [4] M. Sakai, On constants in extremal problems of analytic functions. Kōdai Math. Sem. Rep. 21 (1969), 223-225. MR 40 #341. MR 0247072 (40:341)
  • [5] L. Sario and K. Oikawa, Capacity functions, Die Grundlehren der math. Wissenschaften, Band 149, Springer-Verlag, Berlin and New York, 1969. MR 40 #7441. MR 0254232 (40:7441)
  • [6] M. M. Schiffer, The kernel function of an orthonormal system, Duke Math. J. 13 (1946), 529-540. MR 8, 371. MR 0019115 (8:371a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 31.10

Retrieve articles in all journals with MSC: 31.10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0279320-1
Keywords: Kernel function, mean-value property, principal function, normal operator, boundary component
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society