PERFECT MATRIX METHODS

D. J. FLEMING AND P. G. JESSUP

Abstract. Let \(e_i = (\delta_{ij})_{j=1}^{\infty} \), \(\Delta = (e_i)_{i=1}^{\infty} \) and let \(A \) be an infinite matrix which maps \(E \) into \(E \) where \(E \) is an FK-space with Schauder basis \(\Delta \). Necessary and sufficient conditions in terms of the matrix \(A \) are obtained for \(E \) to be dense in the summability space \(E_A = \{ x \mid Ax \in E \} \) and conditions are obtained to guarantee that \(E_A \) has Schauder basis \(\Delta \). Finally it is shown that if weak and strong sequential convergence coincide in \(E \) then in \(E_A \) the series \(\sum x_k \epsilon_k \) converges to \(x \) strongly if and only if it converges to \(x \) weakly.

1. Introduction. If \(x \) is a sequence of scalars and \(A = (a_{nk}) \) is an infinite matrix then by \(Ax \), the \(A \)-transform of \(x \), we mean the sequence \(y_n = (Ax)_n = \sum x_k \epsilon_{nk} \) provided each of these sums converge. If \(E \) is any FK-space then \(E_A \) denotes the collection of all sequences \(x \) such that \(Ax \in E \). The space \(E_A \) inherits a topology which makes it into an FK-space [5, p. 226]. A matrix \(A \) with the property that \(Ax \in E \) whenever \(x \in E \) will be called an \(E-E \) method. If \(A \) is an \(E-E \) method then \(E \subseteq E_A \); if in addition \(E = E_A \) then \(A \) is called perfect. Let \(\phi \) denote the space of all finitely nonzero sequences, \(l \) the space of absolutely summable sequences (with \(\|x\| = \sum |x_k| \)) and \(\Delta = (e_i)_{i=1}^{\infty} \), where \(e_i \) is the sequence \((\delta_{ij})_{j=1}^{\infty} \).

In [3] it is shown that a reversible \(l-l \) method is perfect if and only if the matrix \(A \) has no nonzero left annihilators in \(m \), the space of bounded sequences. In [2] conditions are obtained for a general \(l-l \) method to be perfect. It is also shown in [2] that the series \(\sum x_k \epsilon_k \) converges strongly to \(x \in l_d \) if and only if it converges weakly to \(x \). The purpose of this note is to show that many of the results obtained in [2] and [3] for the summability field of an \(l-l \) method carry over to the summability field of an \(E-E \) method when \(E \) is an FK-space with basis \(\Delta \). In particular we show (Theorem 9) that if weak and strong sequential convergence coincide in \(E \) then for \(x \in E_A \) the series \(\sum x_k \epsilon_k \) converges to \(x \) strongly if and only if it converges weakly and (Theorem 2) that a reversible \(E-E \) method \(A \) is perfect if and only if \(A \) has no nonzero left annihilators in the sequence space representation of its dual. We will assume throughout this note that \(E \)
is an FK-space with basis Δ and so in particular every such space contains ϕ.

2. **Notation and terminology.** An E-E method is said to be reversible if the equation $y = Ax$ has a unique solution x for each $y \in E$. If A is a reversible E-E method then E_A is topologically isomorphic to E under the map A [5, Corollary 5, p. 204, Corollary 1, p. 199]. If the E-E method A is reversible then every $f \in E_A^*$ can be written in the form $g \circ A$ for $g \in E^*$, where $*$ denotes the space of continuous linear functionals.

If x and y are sequences then (x, y) will denote the sum $\sum kx_ky_k$ and xA denotes the sequence $(\sum x_n a_{nk})_{n=1}^\infty$. For E an FK-space let $E^s = \{t | f \in E^*\}$, where $t_f = (f(e_n))_{n=1}^\infty$. Let bs denote the set of sequences with finite norm $\|x\| = \sup_n |x_n| \sum_{j=1}^n x_j^j$, cs the set of sequences x for which $\sum_k x_k - x_{k+1}$, c_0 the sequences which converge to zero with the sup norm and $bv_0 = bv \cap c_0$ with the norm of bv. Each of the above is a BK-space. Finally we let ω denote the FK-space of all scalar sequences with the product topology.

3. **Principal results.** Motivated by the notions of type M, type M^* (see, for example, [1, p. 90], [4, p. 184] and [2, p. 358]) and the fact that $I_E = m$ and $cs = l^1$ we make the following definition.

Definition 1. An E-E method A is said to be of type E^s if whenever $t_A = 0$ for $t \in E^s$ then $t = 0$.

Theorem 2. Let A be a reversible E-E method; then A is perfect if and only if A is of type E^s.

Proof. (\Leftarrow) It suffices to show that Δ is a fundamental set in E_A. Let $f \in E_A^*$ and suppose that $f(e_k) = 0$ for each k. Since $f \in E_A^*$ there exists a $g \in E^*$ with $f = g \circ A$. Thus $0 = f(e_k) = g[Ae_k] = g([a_{1k}, a_{2k}, \ldots])$ for each k. For $g \in E^*$ and $x \in E$, $g(x) = \sum n g(e_n) x_n$ and hence $\sum n g(e_n) a_{nk} = 0$ for each k. Since A is of type E^s it follows that $g(e_n) = 0$ for each n and hence $g \equiv 0$. Thus for $x \in E_A$, $f(x) = g[Ax] = 0$ and so Δ is a fundamental set in E_A.

(\Rightarrow) Assume now that $E = E_A$ and that $t_f A = 0$ for some $f \in E^*$. Let F_a denote the E_A topology and let $A | E$ denote A considered as a linear operator from E into E. Since $A : E_A \to E$ is continuous and $f \in E^*$ it follows that $f \circ A | E \in (E, F_a)^*$. Furthermore Δ is a basis for (E, F_a) since the F_a topology is weaker than the topology of E [5, p. 203]. Now $f[A e_k] = f[\sum n a_{nk} e_n] = \sum n a_{nk} f(e_n) = (t_f A) k$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Therefore $\phi \subseteq (f \circ A | E)^\perp$ but $(f \circ A | E)^\perp$ is F_a-closed in E and ϕ is F_a-fundamental in E, hence $f \circ A | E \equiv 0$. The zero functional and $f \circ A$ are both continuous extensions of $f \circ A | E$ to all of E_A. Since $E = E_A$ it follows that $f \circ A \equiv 0$ and hence by the reversibility of A, $f \equiv 0$. Thus $f = 0$ and A is of type E'.

Since $l^b = m$ we obtain as a corollary the following theorem of Brown and Cowling [3, Theorem 2].

Corollary 3. A reversible l-l method is perfect if and only if it is of type M^\ast.

Similarly for reversible E-E methods, where E is one of the familiar sequence spaces c_0, c_0 or bv_0, we have that perfectness is equivalent to type bo, type l, and type bs respectively.

Definition 4. If A is an E-E method and $t \in E^b$ we say that t has property P if $(tA, x) = \sum^\infty_{k=1} \sum a_{nk} x_k$ converges for each $x \in E_A$. The set of all $t \in E^b$ with property P is denoted by Q. The method is called associative if $Q = E^b$ and $f[Ax] = (t_fA, x)$ for each $f \in E^*$ and each $x \in E_A$ (cf. [2, p. 282]).

Lemma 5. Let A be an E-E method and let $t \in Q$ then (tA, \cdot) defines a continuous linear functional on E_A.

Proof. Let $g_j = \sum^\infty_{k=1} (\sum a_{nk} x_k) E_k$ and $g(x) = (tA, x)$, where E_k is the kth coordinate functional. Since E_A is an FK-space $g_j \in E^*_A$ for each j and since $t \in Q$, $g_j \to g$ pointwise on E_A. The continuity of g follows from [5, p. 200].

Theorem 6. Let A be an E-E method. Then A is perfect if and only if $f[Ax] = (t_fA, x)$ for each $x \in E_A$ and each $t_f \in Q$ (cf. [3, Theorem 1] and [2, Theorem A]).

Proof. (\Rightarrow) Let $t_f \in Q$ and let $g(x) = (t_fA, x)$ for $x \in E_A$; then $f[Ax] = f[\sum a_{nk} x_k] = (t_fA, e_k)$ and so $g = f \circ A$ on the fundamental set Δ. Since g and $f \circ A$ are continuous on E_A it follows that $g = f \circ A$.

(\Leftarrow) Let $f \in E^*_A$ be such that $f(e_k) = 0$ for each k. By [5, p. 230] there exists $F \in \omega_A^*$ and $G \in E^*$ such that $f(x) = F(x) + G[Ax]$ for each $x \in E_A$. Therefore $0 = f(e_k) = F(e_k) + G[\sum a_{nk} e_n] = F(e_k) + \sum a_{nk} G(e_n)$. Since Δ is a basis for ω_A [5, p. 230] we have in particular that $F(x) = \sum F(e_k) x_k$ for each $x \in E_A$. Combining these results we have that

$$\sum F(e_k) x_k = - \sum_k \left(\sum_n G(e_n) a_{nk} \right) x_k$$

for each $x \in E_A$. Thus
322 D. J. FLEMING AND P. G. JESSUP (July

\[f(x) = F(x) + G[Ax] \]

\[= \sum_k F(e_k)x_k + \sum_n G(e_n) \sum_k a_{nk}x_k \]

\[= \sum_n G(e_n) \sum_k a_{nk}x_k - \sum_k \left(\sum_n G(e_n)a_{nk} \right)x_k \]

\[= G[Ax] - (t_A, x) = 0. \]

Hence \(f = 0 \) and so \(E = E_A \).

Theorem 7. Let \(A \) be an \(E-E \) method. Then \(A \) is associative if and only if \(E_A \) has basis \(\Delta \).

Proof. \((\imp)\) Let \(x \in E_A \) and \(f \in E_A^* \). Choose \(F \in \omega_A^* \), \(G \in E^* \) such that \(f = F + G \circ A \) and let \(y_n = x - \sum_{k=1}^n x_ek_{ek} \). Then

\[f(y_n) = F(y_n) + G[Ay_n] = F(y_n) + (t_A, y_n) \]

\[= F(y_n) + \sum_{k=1}^\infty \left(\sum_{j=1}^\infty G(e_j)a_{jk} \right)x_k. \]

The first term \(\lim n \)'s to 0 on \(n \) since \(\Delta \) is a basis for \(\omega_A \) and the second limits to 0 since the double series converges. Thus \(\Delta \) is a weak basis and hence a basis for \(E_A \).

\((\lim)\) Let \(x \in E_A \) and \(f \in E^* \) then \(f \circ A \in E_A^* \) and so

\[f[Ax] = \sum_k x_kf[Ae_k] = \sum_k x_k \sum_n g_{nk}(e_n) = (t_A, x). \]

We shall say that \(x \in E_A \) is perfect if \(f(Ax) = (t_A, x) \) for each \(t_A \in Q \) and that \(x \) is associative if \(Q = E^* \) and \(f(Ax) = (t_A, x) \) for all \(t_A \in Q \).

Theorem 8. Let \(A \) be an \(E-E \) method and let \(x \in E_A \); then

(i) \(\sum_k x_k e_k \) converges to \(x \) weakly if and only if \(x \) is associative,

(ii) \(x \) is in the closure of \(\phi \) in \(E_A \) if and only if \(x \) is perfect.

Proof. \((\imp)\) Let \(t_A \in E^* \) and let \(F = f \circ A \); then \(F \in E_A^* \) and

\[F(x) = \sum_k x_k F(e_k) = \sum_k x_k f(Ae_k) = \sum_k x_k \sum_n a_{nk}(e_n) = (t_A, x). \]

\((\lim)\) Let \(g \in E_A^* \); say \(g = F + G \circ A \) for \(F \in \omega_A^* \) and \(G \in E^* \); then\n
\[g(e_k) = F(e_k) + \sum_n G(e_n)a_{nk}. \]

Thus

\[g(x) = F(x) + G[Ax] = \sum_k x_k F(e_k) + G[Ax] \]

\[= \sum_k x_k \left(g(e_k) - \sum_n G(e_n)a_{nk} \right) + G[Ax] \]

\[= \sum_k g(e_k) - (t_A, x) + G[Ax] = \sum_k x_k g(e_k). \]
(ii) \(\Rightarrow \) Let \(x \) be in the closure of \(\phi \) in \(E_A \) and let \(t \in \mathbb{Q} \). Define \(g: E_A \to \mathbb{R} \) by \(g(y) = f[Ay] - (t \circ A, y) \); then \(g \in E_A^* \) by Lemma 5 but \(g(e_k) = 0 \) for each \(k \) and so \(g(x) = 0 \). Therefore \(f[Ax] = (t \circ A, x) \).

\(\Leftarrow \) Let \(f \in E_A^* \) be such that \(f[\phi] = 0 \). Then, as in (i), \(f(x) = \sum_k f(e_k)x_k + G[Ax] - (t \circ A, x) = G[Ax] - (t \circ A, x) \). Thus \(t \in \mathbb{Q} \) and so \(f(x) = 0 \).

For the following theorem we do not assume \(E \) has basis \(\Delta \).

Theorem 9. Let \(A \) be an \(E-E \) method and suppose that weak and strong sequential convergence coincide in \(E \). Then for \(x \in E_A \) the series \(\sum x_k e_k \) converges to \(x \) if and only if it converges to \(x \) weakly.

Proof. Let \(x \in E_A \) be such that \(\sum x_k e_k \to x \) weakly and let \(y_j = (0, \ldots, 0, x_j, x_{j+1}, \ldots) \). Let \((r_n) \) be the determining seminorms for \(E \); then the topology of \(E_A \) is given by the seminorms \(\{E_n\} \), \((p_n), (q_n) \), where \(q_n = r_n \circ A \) and \(p_n \) is defined by

\[
p_n(x) = \sup \left| \sum_{k=1}^{m} a_{nk} x_k \right| \quad [5, p. 226, Theorem 1].
\]

Since \(E_n \subseteq E_A^* \) for each \(n \) it is clear that \(|E_n(y_j)| \to 0 \) for each \(n \). Let \(f \in E^* \) then \(f \circ A \in E_A^* \) and hence \(f \circ A(y_j) \to 0 \). Thus \((A(y_j)) \) converges to zero weakly and hence strongly in \(E \) and so \(q_n(y_j) \to 0 \) for each \(n \). Finally fix \(n \) and let \(\epsilon > 0 \) be given. Choose \(N \) such that \(j, m \geq N \) implies

\[
\left| \sum_{k=1}^{m} a_{nk} x_k \right| < \epsilon.
\]

Thus

\[
\sup_{m > j} \left| \sum_{k=j}^{m} a_{nk} x_k \right| \leq \epsilon \quad \text{for } j > N,
\]

but \(p_n(y_j) = \sup_{m \geq j} \left| \sum_{k=j}^{m} a_{nk} x_k \right| \) and hence \(p_n(y_j) \to 0 \) for each \(n \). It follows that \(y \to 0 \) in \(E_A \).

Remarks. (i) It has been pointed out by G. Bennett that the proof of Lemma 3 on p. 285 of [2] makes incorrect use of Satz 3.4 of [6, p. 60]. Since weak and strong sequential convergence coincide in \(l \) Lemma 3 of [2] follows from Theorem 9 above.

(ii) If \(E \) is an FK-space with determining seminorms \((r_n) \) and if \(A \) is a row finite \(E-E \) method then the seminorms \(\{E_n\} \) and \((r_n \circ A) \) are sufficient to determine the topology of \(E_A \). Thus if weak and strong sequential convergence coincide in \(E \) one can proceed as in the proof of Theorem 9 to show they coincide in \(E_A \). This result has been observed by Bennett in [7].
REFERENCES

Clarkson College of Technology, Potsdam, New York 13676