Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On functions of bounded boundary rotation

Author: Ming-chit Liu
Journal: Proc. Amer. Math. Soc. 29 (1971), 345-348
MSC: Primary 30.42
MathSciNet review: 0286993
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ U = \{ z = r{e^{i\theta }}\left\vert {r < 1\} } \right.$. For $ k \geqq 2$ let $ {V_k}$ be the class of normalized analytic functions $ f(z)$ such that the boundary rotation of $ f(U)$ is at most $ k\pi $. Let $ A(r)$ be the integral

$\displaystyle \int_0^{2\pi } {\int_0^r {\left\vert {f'(\rho {e^{i\theta }})} \right\vert} } {^2}\rho d\rho d\theta ,$

$ L(r)$ the length of the image of the circle $ \left\vert z \right\vert = r$ under the mapping $ f(z)$. In this paper the author proves that for $ z \in U$ if $ f(z) \in {V_k}$ then

$\displaystyle \mathop {\lim \sup }\limits_{r \to 1} \left( {\mathop {{\operator... ...i A(r)\log \left( {\frac{{1 + r}}{{1 - r}}} \right)} \right)^{ - 1/2}} \leqq k.$

This generalizes to arbitrary $ k \geqq 2$ the recent result of Nunokawa for the case $ k = 2$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30.42

Retrieve articles in all journals with MSC: 30.42

Additional Information

Keywords: Analytic mapping, function of bounded boundary rotation, convex function, curve length, order of infinity
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society