Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Nonstable homotopy groups of Thom complexes

Author: P. J. Ledden
Journal: Proc. Amer. Math. Soc. 29 (1971), 404-410
MSC: Primary 57.20
MathSciNet review: 0288776
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The first nonstable homotopy group of $ MO(n),{\pi _{2n}}(MO(n))$, is computed for all n, together with the corresponding Postnikov invariant. The computations give a new proof of a theorem of Mahowald on the normal bundle of an imbedding.

References [Enhancements On Off] (What's this?)

  • [1] René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17–86 (French). MR 0061823
  • [2] Jean-Pierre Serre, Cohomologie modulo 2 des complexes d’Eilenberg-MacLane, Comment. Math. Helv. 27 (1953), 198–232 (French). MR 0060234
  • [3] J. H. C. Whitehead, On simply connected, 4-dimensional polyhedra, Comment. Math. Helv. 22 (1949), 48–92. MR 0029171
  • [4] Mark Mahowald, On the normal bundle of a manifold, Pacific J. Math. 14 (1964), 1335–1341. MR 0176485
  • [5] W. S. Massey, Pontryagin squares in the Thom space of a bundle, Pacific J. Math. 31 (1969), 133–142. MR 0250332
  • [6] P. J. Ledden, Thom spaces, projective spaces, and a theorem of Whitney, Thesis, Stanford University, Stanford, Calif., 1965.
  • [7] W. S. Massey, On the Stiefel-Whitney classes of a manifold, Amer. J. Math. 82 (1960), 92–102. MR 0111053
  • [8] W. S. Massey, Proof of a conjecture of Whitney, Pacific J. Math. 31 (1969), 143–156. MR 0250331

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57.20

Retrieve articles in all journals with MSC: 57.20

Additional Information

Keywords: Thom spaces, nonstable homotopy groups, orthogonal realization, normal bundle, imbedding theorems
Article copyright: © Copyright 1971 American Mathematical Society