Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On rings satisfying $ [(a,\,b,\,c),\,d]=0$


Author: Armin Thedy
Journal: Proc. Amer. Math. Soc. 29 (1971), 250-254
MSC: Primary 17A30
DOI: https://doi.org/10.1090/S0002-9939-1971-0294432-4
MathSciNet review: 0294432
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A simple nonassociative ring, in which the associators commute with all elements, is under mild additional assumptions either associative or commutative. This result cannot be extended to prime rings since a construction of semiprime rings gives counterexamples.


References [Enhancements On Off] (What's this?)

  • [1] A. A. Albert, Power-associative rings, Trans. Amer. Math. Soc. 64 (1948), 552-593. MR 10, 349. MR 0027750 (10:349g)
  • [2] R. E. Block, A unification of the theories of Jordan and alternative algebras (to appear). MR 0313332 (47:1887)
  • [3] L. W. Davis and D. J. Rodabaugh, Simple nearly antiflexible algebras have unity elements, J. London Math. Soc. (2) 1 (1969), 69-72. MR 39 #4235. MR 0242908 (39:4235)
  • [4] E. Kleinfeld, Standard and accessible rings, Canad. J. Math. 8 (1956), 335-340. MR 17, 1180. MR 0078349 (17:1180b)
  • [5] E. Kleinfeld, M. H. Kleinfeld and F. Kosier, The structure of generalized accessible rings, Bull. Amer. Math. Soc. 75 (1969), 415-417. MR 39 #269. MR 0238909 (39:269)
  • [6] -, A generalization of commutative and alternative rings, Canad. J. Math. 22 (1970), 348-362. MR 0258896 (41:3541)
  • [7] E. Kleinfeld et al., The structure of associator dependent rings, Trans. Amer. Math. Soc. 110 (1964), 473-483. MR 28 #1221. MR 0157993 (28:1221)
  • [8] L. A. Kokoris, On rings of $ (\gamma ,\delta )$-type, Proc. Amer. Math. Soc. 9 (1958), 897-904. MR 21 #1993. MR 0103211 (21:1993)
  • [9] R. L. San Soucie, Weakly standard rings, Amer. J. Math. 79 (1957), 80-86. MR 18, 870. MR 0084496 (18:870a)
  • [10] R. D. Schafer, Generalized standard algebras, J. Algebra 12 (1969), 386-417. MR 0283035 (44:268)
  • [11] A. Thedy, Zum Wedderburnschen Zerlegungssatz, Math. Z. 113 (1970), 173-195. MR 0263887 (41:8486)
  • [12] -, On rings with completely alternative commutators, Amer. J. Math. 119 (1971). MR 0274537 (43:300)
  • [13] -, On rings with commutators in the nuclei, Math. Z. (to appear). MR 0296118 (45:5179)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 17A30

Retrieve articles in all journals with MSC: 17A30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0294432-4
Keywords: Nonassociative ring, standard ring, standard algebra, $ (\gamma ,\delta )$-ring, semiprime ring, simple ring
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society