Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A characterization of regular local rings


Author: Jacob Barshay
Journal: Proc. Amer. Math. Soc. 29 (1971), 437-439
MSC: Primary 13.95
DOI: https://doi.org/10.1090/S0002-9939-1971-0279093-2
MathSciNet review: 0279093
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a local ring, $ (A,\mathfrak{M})$ of positive depth regularity is shown to be equivalent to the symmetric algebra of $ \mathfrak{M}$ being torsion free.


References [Enhancements On Off] (What's this?)

  • [1] A. Micali, Sur les algèbres universelles, Ann. Inst. Fourier (Grenoble) 14 (1964), fase. 2, 33-87. MR 31 #1275. MR 0177009 (31:1275)
  • [2] A. Micali, P. Salmon and P. Samuel, Intégreté et factorialité des algébres symétriques, Proc. Fourth Brazilian Math. Colloq. (1963), Conselho Nacional de Pesquisas, São Paulo, 1965, pp. 61-76. MR 34 #7556. MR 0207741 (34:7556)
  • [3] D. G. Northcott, Ideal theory, Cambridge Tracts in Math. and Math. Phys., no. 42, Cambridge Univ. Press, New York, 1953. MR 15, 390. MR 0058575 (15:390f)
  • [4] P. Samuel, Anneaux gradués factoriels et modules réflexifs, Bull. Soc. Math. France 92 (1964), 237-249. MR 32 #4160. MR 0186702 (32:4160)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13.95

Retrieve articles in all journals with MSC: 13.95


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0279093-2
Keywords: Regular local ring, symmetric algebra, Rees algebra
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society