Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A characterization of regular local rings

Author: Jacob Barshay
Journal: Proc. Amer. Math. Soc. 29 (1971), 437-439
MSC: Primary 13.95
MathSciNet review: 0279093
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a local ring, $ (A,\mathfrak{M})$ of positive depth regularity is shown to be equivalent to the symmetric algebra of $ \mathfrak{M}$ being torsion free.

References [Enhancements On Off] (What's this?)

  • [1] Artibano Micali, Sur les algèbres universelles, Ann. Inst. Fourier (Grenoble) 14 (1964), no. fasc. 2, 33–87 (French). MR 0177009
  • [2] A. Micali, P. Salmon, and P. Samuel, Intégrité et factorialité des algèbres symétriques, Proc. Fourth Brazilian Math. Colloq. (1963) (Portuguese), Conselho Nacional de Pesquisas, São Paulo, 1965, pp. 61–76 (French). MR 0207741
  • [3] D. G. Northcott, Ideal theory, Cambridge Tracts in Mathematics and Mathematical Physics, No. 42, Cambridge, at the University Press, 1953. MR 0058575
  • [4] Pierre Samuel, Anneaux gradués factoriels et modules réflexifs, Bull. Soc. Math. France 92 (1964), 237–249 (French). MR 0186702

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13.95

Retrieve articles in all journals with MSC: 13.95

Additional Information

Keywords: Regular local ring, symmetric algebra, Rees algebra
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society