PROPERTY P AND DIRECT INTEGRAL DECOMPOSITION OF W^* ALGEBRAS

PAUL WILLIG

Abstract. If \mathfrak{A} is a W^* algebra on separable Hilbert space H, and if $\mathfrak{A}(\lambda)$ are the factors in the direct integral decomposition of \mathfrak{A}, then $\mathfrak{A}^0 = \{x | \mathfrak{A}(\lambda) \text{ has property P} \}$ is μ-measurable, and \mathfrak{A} has property P μ-a.e.

Let \mathfrak{A} be a W^* algebra on separable Hilbert space H. Let \mathfrak{A} have direct integral decomposition into factors

$$\mathfrak{A} = \int_{\Lambda} \bigoplus \mathfrak{A}(\lambda) \mu(d\lambda),$$

where K denotes the underlying separable Hilbert space of H. We assume that the reader is familiar with the notation and methods of [7, Chapter 1] and [8].

We establish the following notation for this paper. \mathfrak{A}_1 denotes the unit sphere of \mathfrak{A}, and $\mathfrak{U}(\mathfrak{A})$ denotes the unitary operators in \mathfrak{A}. Z will denote the center of \mathfrak{A} (Z consists of all diagonal operators in $B(H)$ [7, Theorem 1.5.9]). $\mathfrak{E}(\mathfrak{A})$ denotes the set of all nonnegative real-valued functions on $\mathfrak{U}(\mathfrak{A})$ which vanish except at a finite number of points and which satisfy $\sum_{U \in \mathfrak{U}(\mathfrak{A})} f(U) = 1$. We call the finite set of U such that $f(U) \neq 0$ the support of f. We write $f \cdot T = \sum_{U \in \mathfrak{U}(\mathfrak{A})} f(U) U T U^*$ for $T \in B(H)$ (or $T \in B(K)$ if we are dealing with $\mathfrak{A}(\lambda)$).

If L is a separable Hilbert space, let S denote the unit sphere of L and let $\{x_i\}$ be a fixed dense sequence in S. If d denotes the metric of [7, Lemma 1.4.8] which defines the weak topology on bounded sets in $B(L)$, then, defining $W(A) = d(A, 0)$, we have, for a bounded sequence T_n, that $T_n \to 0$ weakly iff $W(T_n) \to 0$. Moreover, if U is unitary, $W_U(A) = W(UA U^*)$ also determines weak convergence to 0. We use this fact below in Lemma 3.

It follows from [8, Lemma 1.5] and from the proof of [8, Lemma 3.5] that there are countable sequences $A_n \subseteq A_1 \subseteq A'_1 \subseteq \mathfrak{A}_1$, $U_n \subseteq \mathfrak{U}(\mathfrak{A})$ such that for μ-a.e. λ the sequence $A_n(\lambda)$ ($A'_n(\lambda)$, $U_n(\lambda)$) is strong-* dense in $\mathfrak{A}(\lambda)$, $\mathfrak{A}'(\lambda)$, $\mathfrak{U}(\mathfrak{A}(\lambda))$. Moreover (see remark after [8,
Lemma 2.2]) we may assume that all operators we deal with are strong-* continuous.

Our aim in this paper is to study property P of \(\alpha \) in relation to the factors \(\alpha(\lambda) \).

Definition 1 [7, p. 168]. \(\alpha \) has property P (property CP) if for every \(T \in B(H) \) (every \(T \in Z' \)) the intersection of the weakly closed convex hull of \(K(T) = \{ UTU^* | U \in \mathcal{U}(\alpha) \} \) with \(\alpha' \) is not empty.

For a factor, property CP is simply property P. We shall show that this is always the case, and we use this to prove that \(\alpha \) has property P iff \(\alpha(\lambda) \) has property P \(\mu \)-a.e.

Lemma 2. Let \(\mathcal{B} \) be an Abelian \(W* \)-algebra on separable Hilbert space \(L \). Then \(\mathcal{B} \) has property P.

Proof. By [7, Lemma 2.1] \(\mathcal{B} \) is generated by a Hermitian operator \(A \). We may assume that \(\sigma(A) \subset [0, 1] \). Letting \(E_t \) denote the spectral projections of \(A \), it is clear that \(\mathcal{B} \) is generated by the increasing sequence of finite-dimensional \(*\)-subalgebras \(\mathcal{B}_m \) generated by \(\{ E_t | t = n2^{-m}, n = 1, 2, \ldots, 2^m \} \). Hence \(\mathcal{B} \) has property P [7, p. 168]. Q.E.D.

Lemma 3. If \(\mathcal{B} \) has property CP then \(\alpha \) has property P.

Proof. Suppose \(\mathcal{B} \) has property CP. Let \(T \in B(H) \) be given. Since we are dealing with weak convergence on bounded sets of operators, it follows from Lemma 2 (with \(\mathcal{B} = \mathcal{Z} \) and \(H = L \)) and our hypothesis that there are sequences \(f_k \in \mathcal{B}(\mathcal{Z}) \) and \(g_k \in \mathcal{B}(\alpha) \) and operators \(A \in Z' \) and \(A' \in \alpha' \) such that \(f_k \cdot T \to A \) weakly and \(g_k \cdot A \to A' \) weakly. Define \(W \) as above for \(L = H \), and let \(B_k = f_k \cdot T \) and \(C_k = g_k \cdot A \). Then \(W(B_k - A) \to 0 \) and \(W(C_k - A') \to 0 \). It suffices to show that given \(\epsilon > 0 \) there is \(h \in \mathcal{B}(\alpha) \) such that \(W(h \cdot T - A') < \epsilon \) in order to conclude that \(\alpha \) has property P.

Given \(\epsilon > 0 \), we can find \(g_k \) such that \(W(C_k - A') < \epsilon/2 \). Let the support of \(g_k \) consist of \(m \) operators. Then we can choose \(f_k \) so that, for each \(U \) in the support of \(g_k \), \(W(U(B_k - A)) < \epsilon/(2m) \). It follows that

\[
W((g_k \cdot B_k) - A') < \epsilon.
\]

Moreover, if we put \(h = g_k \ast f_k \) (convolution) then \(g_k \cdot B_k = h \cdot T \) and \(h \in \mathcal{B}(\alpha) \). Q.E.D.

We now come to our main results. In the remaining portion of this paper, \(W \) is defined as above for \(L = K \), and \(\mathcal{S} \) denotes the unit sphere in \(B(K) \).

Theorem 4. \(\varphi = \{ \lambda | \alpha(\lambda) \text{ has property P} \} \) is \(\mu \)-measurable.
Proof. We shall give a measurable characterization of the set \(\varphi' = \Delta - \varphi \). We begin by considering a \(W^* \)-algebra \(B \) on \(K \) which has property \(P \). Given \(T \in B \), it follows that there are \(f_k \in \mathcal{E}(B) \) and \(B' \in \mathcal{B}' \) such that \(f_k \cdot T = T_k \mapsto B' \) weakly. Since bounded sets are weakly compact and since \(W \) determines weak convergence on bounded sets, this is equivalent to the statement that, if \(B'_n \) are dense in \(\mathcal{B}' \), then there are \(B'_n \) such that \(W(T_k - B'_n) \to 0 \). Next, suppose \(\{U_n\} \) are dense in \(U(\mathcal{B}) \). Then it is easy to see that we may assume that the support of each \(f_k \) is contained in \(\{U_n\} \) and that the values \(f(U_n) \) are rational. This is the key to our theorem.

Let \(\mathcal{F} \) be that subset of \(\mathcal{E}(\mathfrak{A}) \) consisting of \(f \) with support contained in \(\{U_n\} \) and whose values \(f(U_n) \) are rational. Clearly \(\mathcal{F} \) is countable. For each \(f \in \mathcal{F} \) and each pair of positive integers \((k, m) \) define a subset \(E(f, k, m) \) of \(\Delta \times \mathcal{B} \) consisting of pairs \((\lambda, T) \) satisfying the following condition, where by \((f \cdot T)(\lambda) \) we mean \(\sum_{\mathcal{U}_n} f(U_n) \mathcal{U}_n(\lambda) T(U_n) \mathcal{U}_k \).

\[
W((f \cdot T)(\lambda) - A_k(\lambda)) \leq 1/m.
\]

Each set \(E(f, k, m) \) is closed. It follows from our remarks above that, if we let \(\pi \) denote the projection of \(\Delta \times \mathcal{B} \) onto \(\Delta \), then \(\varphi' \) differs by a \(\mu \)-null set from the set

\[
E = \pi \left(\bigcup_{m=1}^{\infty} \bigcap_{k=1}^{\infty} \bigcap_{f \in \mathcal{F}} E(f, k, m) \right).
\]

\(E \) is \(\mu \)-measurable by [7, Lemma 1.4.6] and the theorem follows.

Q.E.D.

Theorem 5. \(\mathfrak{A} \) has property \(P \) iff \(\mu(P') = 0 \).

Proof. Suppose \(\mu(P') > 0 \). Then it follows from our last proof and from [7, Lemma 1.4.7] that there exist an integer \(m > 0 \), a set \(F \) of positive measure, and a \(\mu \)-measurable operator-valued function \(T \) defined on \(F \) such that \((\lambda, T(\lambda)) \in E(f, k, m) \) for each \(f \in \mathcal{F} \) and each \(k \). Extend \(T \) to all of \(\Delta \) by letting \(T(\lambda) = 0 \) if \(\lambda \notin F \), and set \(T = \int_{\Delta} \Theta T(\lambda) \mu(d\lambda) \). Then \(T \in B(H) \), and, if \(\mathfrak{A} \) has property \(P \), there are functions \(g_k \in \mathcal{E}(\mathfrak{A}) \) and an operator \(A' \in \mathcal{A}' \) such that \(g_k \cdot T \mapsto A' \) weakly. By [8, Lemma 1.7] and [2, Corollary III.6.13] we may assume \((g_k \cdot T \in \mathcal{Z}' \) for each \(k \)) that \((g_k \cdot T)(\lambda) - A'(\lambda) \to 0 \) weakly \(\mu \)-a.e. In particular this must be true for \(\mu \)-a.e. \(\lambda \) in \(F \), which, by our remarks beginning the proof of Theorem 4, contradicts the fact that \((\lambda, T(\lambda)) \in E(f, k, m) \) for each \(f \in \mathcal{F} \) and each \(k \) and all \(\lambda \in F \). Hence \(\mathfrak{A} \) does not have property \(P \).
To prove the converse, it suffices by Lemma 3 to show that if \(\mu(P') = 0 \) then \(\alpha \) has property CP. We may restrict our attention to \(T \in Z'_1 \), with \(T = \int \alpha \otimes T(\lambda) \mu(\alpha) \). By [7, p. 228], [8, Lemma 1.7], [2, Corollary III.6.13], and the remark following [8, Lemma 2.2] we may assume that \(\Lambda \) is compact and that \(T(\lambda) \) is strong-* continuous in \(\lambda \). Moreover, since \(\mu(P') = 0 \), we may assume that \(\alpha(\lambda) \) has property P for every \(\lambda \) (see remark following [7, Corollary 1.5.10]). Thus given any integer \(m \) and any \(\lambda \in \Lambda \), there are \(f \in \mathcal{F} \) and \(A'_i \) such that

\[
W((f \cdot T)(\lambda) - A'_i(\lambda)) < 1/m.
\]

By continuity each such inequality holds on an open set, and by compactness there is a finite cover by such sets. Hence there are disjoint \(\mu \)-measurable sets \(F_i \) such that \(\Lambda = \bigcup_{i=1}^n F_i \) and such that for each \(F_i \) there are \(f_i \in \mathcal{F} \) and \(A'_i \) for which

\[
W((f_i \cdot T)\lambda - A'_i(\lambda)) < 1/m \quad \text{for } \lambda \in F_i.
\]

We now show that there are \(h \in \mathcal{E}(\alpha) \) and \(A' \in \mathcal{A}' \) for which

\[
W((h \cdot T)(\lambda) - A'(\lambda)) < 1/m \quad \text{for every } \lambda.
\]

It then follows that \(\alpha \) has property CP, and our theorem is proved.

For convenience of notation, assume \(\Lambda = F \cup G \), with \(f, g \) and \(A'_i, A'_i' \) as above. Let \(V_1, \ldots, V_n \) be the support of \(f \), and let \(W_1, \ldots, W_m \) be the support of \(g \). Define unitaries \(U_{i,j} \) by \(U_{i,j}(\lambda) = V_i(\lambda) \) if \(\lambda \in F \) and \(W_j(\lambda) \) if \(\lambda \in G \). Define \(h \) with support on the \(U_{i,j} \) by \(h(U_{i,j}) = f(V_i)g(W_j) \). Define \(A' \in \mathcal{A}' \) by \(A'(\lambda) = A'_i(\lambda), \lambda \in F \) and \(A'(\lambda) = A'_i'(\lambda), \lambda \in G \). Then it is clear that \(h \) and \(A' \) give the desired result. Clearly the construction does not depend on the number of sets \(F_i \), and our theorem is proved. Q.E.D.

Corollary 6. If \(\alpha \) is of type I, then \(\alpha \) has property P.

Proof. It suffices to note that each type I factor on \(K \) has property P. This is clear for \(B(K) \) and for finite-dimensional factors, and the general result follows, since property P is a *-isomorphism invariant [3], from the known structure of type I factors. Q.E.D.

Schwartz introduced property P in [5], [6] as a property of hyperfinite factors. Since Powers has constructed a continuum of hyperfinite type III factors [4] and Ching has constructed a continuum of type III factors not having property P [1] and therefore not hyperfinite, the following corollary has some interest.
Corollary 7. Let \mathcal{A} be a W^* algebra on separable Hilbert space H. Then there is a projection $E \in \mathcal{Z}$ such that \mathcal{A}_E has property P and such that $\mathcal{Z} = \mathcal{A}_{I-E}$ contains no central projection $F \neq 0$ for which \mathcal{A}_F has property P.

Proof. Let E be the projection induced by the characteristic function of \varnothing. Q.E.D.

Bibliography