Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Energy-finite solutions of $ \Delta u=Pu$ and Dirichlet mappings


Author: Moses Glasner
Journal: Proc. Amer. Math. Soc. 29 (1971), 553-556
MSC: Primary 53.72; Secondary 30.00
DOI: https://doi.org/10.1090/S0002-9939-1971-0279734-X
MathSciNet review: 0279734
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let R, S be noncompact Riemannian m-manifolds and let $ T:R \to S$ be a Dirichlet mapping. Consider a nonnegative locally bounded measurable m-form P on R and set $ Q = T_\ast ^{ - 1}P$, the pull-back of P under $ {T^{ - 1}}$. Denote by $ PE(R)\;(QE(S)$ resp.) the space of energy-finite solutions of $ \Delta u = Pu$ on R ( $ \Delta u = Qu$ on S resp.). The spaces $ PE(R)$ and $ QE(S)$ are isomorphic, the isomorphism being bicontinuous with respect to the energy norms and preserves the sup norm of bounded solutions.


References [Enhancements On Off] (What's this?)

  • [1] M. Glasner, Dirichlet mappings of Riemannian manifolds and the equation $ \Delta u = Pu$, J. Differential Equations 9 (1971). MR 0278232 (43:3963)
  • [2] M. Glasner and R. Katz, On the behavior of solutions of $ \Delta u = Pu$ at the Royden boundary, J. Analyse Math. 22 (1969), 343-354. MR 41 #1995. MR 0257344 (41:1995)
  • [3] M. Nakai, Algebraic criterion on quasiconformal equivalence of Riemann surfaces, Nagoya Math. J. 16 (1960), 157-184. MR 22 #1669. MR 0110801 (22:1669)
  • [4] -, Royden's map between Riemann surfaces, Bull. Amer. Math. Soc. 72 (1966), 1003-1005. MR 33 #7528. MR 0199381 (33:7528)
  • [5] -, On parabolicity and Royden compactifications of Riemannian manifolds, Proc. Internat. Congress Functional Analysis, Tokyo, 1969.
  • [6] -, Radon-Nikodym densities and Jacobians, Pacific J. Math. (to appear). MR 0308350 (46:7464)
  • [7] -, Roydan algebras and quasi-isometries of Riemannian manifolds, Pacific J. Math. (to appear). MR 0309015 (46:8126)
  • [8] L. Sario and M. Nakai, Classification theory of Riemann surfaces, Springer-Verlag, Berlin, 1970. MR 0264064 (41:8660)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53.72, 30.00

Retrieve articles in all journals with MSC: 53.72, 30.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0279734-X
Keywords: Dirichlet mappings, quasi-conformal mapping, quasiisometry, solution of $ \Delta u = Pu$, Riemannian manifold, energy integral, Royden compactification
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society