A WHITEHEAD TYPE THEOREM

H. B. HASLAM

Abstract. Let \mathfrak{F} denote the Serre class of finite abelian groups. We consider, for example, conditions under which a map which induces an \mathfrak{F}-epimorphism in homotopy also induces an \mathfrak{F}-epimorphism in homology.

1. Introduction. Let $f: X \to Y$ be a map, \mathcal{C} a Serre class of abelian groups. Modulo some technical assumptions on the spaces X and Y or the class \mathcal{C}, the Whitehead theorem states that f induces a \mathcal{C}-isomorphism in homotopy in each dimension if and only if it induces a \mathcal{C}-isomorphism in homology in each dimension. We are concerned here with finding conditions under which the word “isomorphism” can be replaced by “epimorphism” or “monomorphism” for the class \mathfrak{F} of finite abelian groups. For example, we show that if a map g from an H-space Y to a 1-connected finite CW-complex X induces an \mathfrak{F}-epimorphism in homotopy, then it induces an \mathfrak{F}-epimorphism in homology and X is an \mathfrak{F}-space mod \mathfrak{F}. As a special case we recover a result of [4]: If X is a 1-connected finite CW-complex and a G-space mod \mathfrak{F} (i.e. the evaluation map $\omega: (X^X, 1) \to (X, *)$ induces an \mathfrak{F}-epimorphism in homotopy), then X is an H-space mod \mathfrak{F}. (The converse is also true.) Moreover, ω induces an \mathfrak{F}-epimorphism in homology. The proof given here is much simpler than that given in [4].

I wish to thank W. Browder for a conversation which motivated this note.

All spaces are assumed to have the based homotopy type of a CW-complex and all maps and homotopies are to preserve base points. We will frequently not distinguish between a map and its homotopy class. The symbol “\mathfrak{F}” will be used to denote Hurewicz homomorphisms. We assume that the reader is familiar with [1] and [2].

2. The result. Let X be a 1-connected finite CW-complex, Y be a 1-connected space with $H_m(Y)$ finitely generated for all m and let $f: X \to Y, g: Y \to X$ be maps.

Theorem 1. Suppose that Y is an H-space.

Received by the editors August 18, 1970.

AMS 1969 subject classifications. Primary 5540.

Key words and phrases. H-space (mod \mathfrak{F}), H'-space (mod \mathfrak{F}).

1 Supported by NSF Grant GP 19964.

Copyright © 1971, American Mathematical Society

599
(i) If \(f_* : \pi_m(X) \to \pi_m(Y) \) is an \(H \)-monomorphism for all \(m \), then so is
\[f_* : H_m(X) \to H_m(Y). \]
(ii) If \(g_* : \pi_m(Y) \to \pi_m(X) \) is an \(H \)-epimorphism for all \(m \), then so is
\[g_* : H_m(Y) \to H_m(X). \]
Moreover, \(X \), in each case, is an \(H \)-space mod \(H \).

Theorem 2. Suppose that \(Y \) is an \(H' \)-space.
(i) If \(f_* : H_m(X) \to H_m(Y) \) is an \(H \)-monomorphism for all \(m \), then so is
\[f_* : \pi_m(X) \to \pi_m(Y). \]
(ii) If \(g_* : H_m(Y) \to H_m(X) \) is an \(H \)-epimorphism for all \(m \), then so is
\[g_* : \pi_m(Y) \to \pi_m(X). \]
Moreover, \(X \), in each case, is an \(H' \)-space mod \(H \).

Remark. The 1-connectedness assumption on \(F \) is needed only for
Theorem 2 (ii) and neither assumption on \(Y \) is needed for Theorem 1
(ii).

We will need the following result, the proof of which depends only
on the universal coefficient theorem and the representability of
cohomology.

Lemma 1. Let \(B \) be a space for which \(H_m(B) \) is finitely generated and
let \(\beta \in \pi_m(B) \). Then \(f(\beta) \neq 0 \) if and only if there is a map \(h : B \to K(\pi, m) \)
(= an Eilenberg-Mac Lane space) such that \(h\beta \) is not homotopic to a
constant. (We may take \(\pi = Z_p \) or \(Z \) depending on whether \(f(\beta) \) has
finite or infinite order.)

Lemma 2. Let \(a : A \to B \) be a map from an \(H \)-space \(A \) to a finite CW-
complex \(B \). If \(a_* : \pi_{2n}(A) \to \pi_{2n}(B) \) is an \(H \)-epimorphism, then \(f(\pi_{2n}(B)) \in \mathcal{F} \).

Proof. It suffices to show that \(f(\beta) \) has finite order for each
\(\beta \in \pi_{2n}(B) \). In order to obtain a contradiction, assume that there is a
\(\beta \in \pi_{2n}(B) \) such that \(f(\beta) \) has infinite order. By Lemma 1, there is a
map \(h : B \to K(Z, 2n) \) such that \(h\beta \) is not homotopic to a constant.
Since \(a_* : \pi_{2n}(A) \to \pi_{2n}(B) \) is an \(H \)-epimorphism there is an \(\alpha \in \pi_{2n}(A) \)
such that \(a_*(\alpha) = r\beta \) where \(r \) is some nonzero integer. Now, if \(p : \Sigma A \to A \)
is a retraction map (\(A \) is an \(H \)-space), then \(\text{hop} \circ \Omega \Sigma \alpha : \Sigma S^{2n} \to K(Z, 2n) \) is a nontrivial map which factors through a finite complex.
This is clearly impossible (consider the ring structure of \(H^*(\Sigma S^{2n}) \)) and the lemma is proved.

Corollary 1. If \(B \) is \((2n - 1)\)-connected, then \(\pi_{2n}(B) \in \mathcal{F} \).

Proof of Theorem 1. (i) Since the homotopy suspension homomorphism
for an \(H \)-space is a monomorphism in all dimensions, it follows that the suspension homomorphism \(i_* : \pi_m(X) \to \pi_m(\Omega X) \) (\(i \) is the inclusion map) is an \(H \)-monomorphism for all \(m \) and therefore that \(X \) is an \(H \)-space mod \(H \). Let \(h : S \to X \) be a weak \(H \)-equivalence,
where S is a finite product of odd dimensional spheres. Since the Hurewicz homomorphism $h : \pi_m(Y) \to H_m(Y)$ is an \mathfrak{g}-monomorphism it follows from Lemma 1 that fh induces an \mathfrak{g}-epimorphism in cohomology and hence an \mathfrak{g}-monomorphism in homology. Thus f induces an \mathfrak{g}-monomorphism in homology.

(ii) We first show, by induction, that $\pi_{2n}(X)\in\mathfrak{g}$ for all n. For $n=1$, this follows from Corollary 1. Assume that $\pi_{2n}(X)\in\mathfrak{g}$ for $2n<N$, N odd. Since $g_* : \pi_m(Y)\to\pi_m(X)$ is an \mathfrak{g}-epimorphism for all m, we can use the multiplication on Y to obtain a map $h_N : S\to Y$ such that gh_N induces an \mathfrak{g}-isomorphism in homotopy in dimensions $\leq N$, where S is a finite product of odd dimensional spheres S^n, $3\leq n\leq N$. We can assume that gh_N is an inclusion map. Then $\pi_m(X, S)\in\mathfrak{g}$ for all $m\leq N$; by the Hurewicz theorem, $h : \pi_{N+1}(X, S)\to H_{N+1}(X, S)$ is an \mathfrak{g}-isomorphism. Since $\pi_{N+1}(S)\in\mathfrak{g}$, it follows that $h : \pi_{N+1}(X)\to H_{N+1}(X)$ is an \mathfrak{g}-monomorphism and so, by Lemma 2, $\pi_{2n}(X)\in\mathfrak{g}$ for all n. It is now a simple matter to show that for $N\geq \dim X$, gh_N is a weak \mathfrak{g}-equivalence. Therefore X is an H-space mod \mathfrak{g} and $g_* : H_m(Y)\to H_m(X)$ is an \mathfrak{g}-epimorphism for all m.

Proof of Theorem 2. (i) Since $f_* : H_m(X)\to H_m(Y)$ is an \mathfrak{g}-monomorphism for all m, $f^* : H^m(Y)\to H^m(X)$ is an \mathfrak{g}-epimorphism for all m. Let $\{\beta_i\}$ be a basis for the free part of $H^*(X)$ and let $\{\gamma_i\} \subset H^*(Y)$ be chosen so that $f^* (\gamma_i) = i_i \beta_i$ for some nonzero integer i_i. Let $r > \dim X$ be arbitrary, $\gamma_i' = \gamma_i| Y^r$, where Y^r is the r-skeleton of Y.

Since $\gamma_i \cup \gamma_i' = 0$ (Y is an H'-space), $\gamma_i' \cup \gamma_i' = 0$ and [3] there is a map $h_i : Y^r \to S^{n_i}$, $n_i = \dim \gamma_i$, which maps the fundamental class of S^{n_i} to some nonzero multiple of γ_i. Making use of the fact that Y is an H'-space we obtain a map $h : Y^r \to VS^{n_i}$ (as in [3]) such that hf is a weak \mathfrak{g}-equivalence (by the cellular approximation theorem we can assume $f(X) \subset Y^r$). Therefore X is an H'-space mod \mathfrak{g} and $f_* : \pi_m(X) \to \pi_m(Y)$ is an \mathfrak{g}-monomorphism for $m < r$. Since r was arbitrary the result follows.

(ii) Since the Hurewicz homomorphism for an H'-space is an \mathfrak{g}-epimorphism in all dimensions, it follows that $h : \pi_m(X)\to H_m(X)$ is an \mathfrak{g}-epimorphism for all m and hence that X is an H'-space mod \mathfrak{g}. Moreover, it is clear that there is a map $h : VS^{n_i}\to Y$ such that fh is a weak \mathfrak{g}-equivalence and the result follows.

Remark. In contrast to the Whitehead theorem, the converse of each assertion in Theorems 1 and 2 is false. Counterexamples are given as follows:

1(i). The inclusion map $S^{2n+1}\to\Omega S S^{2n}$.

1(ii). The quotient map $S^n \times S^n/L S^n = S^{2n}, n = 3$ or 7.
2(i). The Whitehead product map $S^{m+n-1} \to S^m \vee S^n$, $m + n$ even, $m, n \geq 2$.

2(ii). The inclusion map $S^m \vee S^n \to S^m \times S^n$.

Bibliography

Florida State University, Tallahassee, Florida 32306