Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Countable paracompactness in product spaces


Author: Phillip Zenor
Journal: Proc. Amer. Math. Soc. 30 (1971), 199-201
MSC: Primary 54.50
DOI: https://doi.org/10.1090/S0002-9939-1971-0279769-7
MathSciNet review: 0279769
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The main purpose of this paper is to show that $ {X^\omega }$ is normal if and only if (1) $ {X^n}$ is normal for each n, and (2) $ {X^\omega }$ is countably paracompact. Furthermore, $ {X^\omega }$ is perfectly normal if and only if $ {X^\omega }$ is hereditarily countably paracompact. Also, the compact Hausdorff space X is metrizable if and only if $ {X^3}$ is hereditarily countably paracompact.


References [Enhancements On Off] (What's this?)

  • [1] C. H. Dowker, On countably paracompact spaces, Canad. J. Math. 3 (1951), 219-224. MR 13, 264. MR 0043446 (13:264c)
  • [2] T. Ishikawa, On countably paracompact spaces, Proc. Japan Acad. 31 (1955), 686-687. MR 0074806 (17:650a)
  • [3] M. Katětov, Complete normality of Cartesian products, Fund. Math. 35 (1948), 271-274. MR 10, 315. MR 0027501 (10:315h)
  • [4] E. Michael, Paracompactness and the Lindelöf property in finite and countable cartesian products (to appear). MR 0287502 (44:4706)
  • [5] P. Zenor, On countable paracompactness and normality, Prace Mat. 13 (1969), 23-32. MR 40 #1975. MR 0248724 (40:1975)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54.50

Retrieve articles in all journals with MSC: 54.50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0279769-7
Keywords: Product spaces, normality, countable paracompactness
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society