Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the centralizer of a subgroup of a Lie group


Author: Dong Hoon Lee
Journal: Proc. Amer. Math. Soc. 30 (1971), 195-198
MSC: Primary 22.50
DOI: https://doi.org/10.1090/S0002-9939-1971-0283134-6
MathSciNet review: 0283134
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, a theorem on the centralizer of a closed subgroup H of a Lie group G such that $ G/H$ admits a finite invariant measure is proved.


References [Enhancements On Off] (What's this?)

  • [1] A. Borel, Density properties for certain subgroups of semi-simple groups without compact components, Ann. of Math. (2) 72 (1960), 179-188. MR 23 #A964. MR 0123639 (23:A964)
  • [2] S. Grosser and M. Moskowitz, Compactness conditions in topological groups. I, J. Reine Angew. Math. (to appear). MR 0284541 (44:1766)
  • [3] G. D. Mostow, On the fundamental group of homogeneous space, Ann. of Math. (2) 66 (1957), 249-255. MR 19, 561. MR 0088675 (19:561c)
  • [4] -, Homogeneous spaces with finite invariant measure, Ann. of Math. (2) 75 (1962), 17-37. MR 26 #2546. MR 0145007 (26:2546)
  • [5] H. C. Wang, On the deformations of lattice in a Lie group, Amer. J. Math. 85 (1963), 189-212. MR 27 #2582. MR 0152606 (27:2582)
  • [6] S. P. Wang, On the centralizer of a lattice, Proc. Amer. Math. Soc. 21 (1969), 21-23. MR 38 #5989. MR 0237708 (38:5989)
  • [7] A. Weil, L'intégration dans les groupes topologiques et ses applications, Actualités Sci. Indust. no. 869, Hermann, Paris, 1940. MR 3, 198. MR 0005741 (3:198b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22.50

Retrieve articles in all journals with MSC: 22.50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0283134-6
Keywords: Homogeneous space, invariant measure, Borel's density theorem, compact support, multiplier, Haar measure, lattice, compactly generated $ {[FC]^ - }$-group, compact element, periodic subgroup
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society