ON THE IMMERSION OF AN n-DIMENSIONAL MANIFOLD IN n+1-DIMENSIONAL EUCLIDEAN SPACE

BENJAMIN HALPERN

Abstract. Consider the subset of n+1-dimensional Euclidean space swept out by the tangent hyperplanes drawn through the points of an immersed compact closed connected n-dimensional smooth manifold. If this is not all of the Euclidean space, then the manifold is diffeomorphic to a sphere, the immersion is an embedding, the image of the immersion is the boundary of a unique open starshaped set, and the set of points not on any tangent hyperplane is the interior of the kernel of the open starshaped set. A converse statement also holds.

Let \(M \) be a compact closed connected \(n \)-dimensional (\(n \geq 2 \)) smooth (infinitely differentiable) manifold and \(\varphi: M \rightarrow \mathbb{R}^{n+1} \) a smooth immersion of \(M \) into \(n+1 \)-dimensional Euclidean space. For each \(p \in M \) consider the hyperplane \(T_p \) in \(\mathbb{R}^{n+1} \) drawn through \(\varphi(p) \) and tangent to \(\varphi(M) \). We prove that if \(\cup_{p \in M} T_p \neq \mathbb{R}^{n+1} \), then \(M \) is diffeomorphic to the \(n \)-sphere, \(\varphi \) is actually an embedding, there exists a unique open starshaped set \(V \subset \mathbb{R}^{n+1} \) such that \(\partial V = \varphi(M) \), and \(\mathbb{R}^{n+1} - \cup_{p \in M} T_p = \text{int}(\text{kernel } V) \), where kernel \(V = \{ p \in V \mid t \varphi + (1-t)q \in V \text{ for all } q \in V \text{ and } 0 \leq t \leq 1 \} \). Conversely, if \(\varphi(M) = \partial V \) for some open starshaped set \(V \subset \mathbb{R}^{n+1} \) with \(\text{int}(\text{kernel } V) \neq \emptyset \), then \(\cup_{p \in M} T_p \neq \mathbb{R}^{n+1} \).

Notation. We denote the tangent space to \(M \) at \(p \) by \(T_M \) and the induced tangent space map of \(\varphi \) by \(d\varphi |_p \). For \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \) let \(||x|| = (x_1^2 + \cdots + x_n^2)^{1/2} \). For \(p, q \in \mathbb{R}^n \) define \([p, q] = \{(1-x)p + xq \mid 0 \leq x < 1 \} \) and define \([p, q]_1, (p, q], \) and \((p, q) \) similarly. If \(A \subset \mathbb{R}^n \) then \(\partial A, \text{int } A, \) and \(\text{cl } A \) will denote the topological boundary, interior, and closure of \(A \).

Proof. We may suppose that \(0 \in \cup_{p \in M} T_p \). Note that \(\varphi(p) \in T_p \) for all \(p \in M \) and so \(0 \in \varphi(M) \). Consider the differentiable map \(\varphi: \mathbb{R}^{n+1} - \{0\} \rightarrow S^n \) defined by \(\varphi(x) = x/||x|| \). It is intuitively obvious and easy to verify analytically that \(d\varphi |_x v = 0 \) iff \(v = \lambda x \) for some \(\lambda \in \mathbb{R} \). From \(0 \in \cup_{p \in M} T_p \) it follows that each \(v \in d\varphi |_p T_M = T_p - \varphi(p), v \neq 0 \), is not of the form \(v = \lambda \varphi(p), \lambda \in \mathbb{R} \). For otherwise \(\lambda \neq 0 \) and \(-\lambda^{-1}v = -\varphi(p) \)

Presented to the Society, August 29, 1969; received by the editors September 24, 1970.

AMS 1969 subject classifications. Primary 5720.

Key words and phrases. Immersion, embedding, Euclidean space, starshaped, tangent hyperplane.
\[d(\varphi \circ \sigma) \big|_p = d\varphi \big|_{\sigma(p)} \circ d\sigma \big|_p \]

is 1-1 and thus an isomorphism onto \(TS^n(\varphi(\sigma(p))) \) for each \(p \in M \). It follows from the implicit function theorem that for each \(p \in M \), \(\varphi \circ \sigma \) maps some open neighborhood of \(p \) diffeomorphically onto an open neighborhood of \((\varphi \circ \sigma)(p) \in S^n \).

Hence for each \(q \in S^n \), \((\varphi \circ \sigma)^{-1} \) is a discrete space. But \((\varphi \circ \sigma)^{-1}(q) \) is a closed subspace of the compact space \(M \) and thus \((\varphi \circ \sigma)^{-1}(q) \) is compact; it follows that \((\varphi \circ \sigma)^{-1}(q) \) must be a finite set. Let \((\varphi \circ \sigma)^{-1}(q) = \{ p_1, \ldots, p_N \} \) with \(p_i \neq p_j \) for \(i \neq j \). From above, we know that for each \(i \), \(1 \leq i \leq N \), there is an open neighborhood \(U_i \) of \(p_i \) which is mapped diffeomorphically onto an open neighborhood \(V_i \) of \(q \). Since \(M \) is Hausdorff the \(U_i \) can be chosen disjoint. Then

\[
V = \bigcap_{i=1}^{N} V_i \cap \left(S^n - (\varphi \circ \sigma) \left(M - \bigcup_{i=1}^{N} U_i \right) \right)
\]

is an open neighborhood of \(q \) such that \((\varphi \circ \sigma)^{-1}(V) \) is a disjoint union of open sets each one of which is mapped diffeomorphically (and thus homeomorphically) onto \(V \). It follows that \((\varphi \circ \sigma)(M) \) is an open subset of \(S^n \). But since \(M \) is compact, \((\varphi \circ \sigma)(M) \) is also compact and thus closed and because \(S^n \) is connected we must have \((\varphi \circ \sigma)(M) = S^n \). This shows that \(\varphi \circ \sigma : M \to S^n \) is a covering map and because \(M \) is connected and \(S^n \) (\(n \geq 2 \)) is simply connected, \(\varphi \circ \sigma \) must be a homeomorphism; hence 1-1 and hence a diffeomorphism. This establishes assertion (1).

Since \(\varphi \circ \sigma \) is 1-1, \(\varphi \) must be 1-1. Hence \(\sigma \) is an embedding (\(M \) is compact) and assertion (2) is established.

Consider the set \(V = \bigcup_{p \in M} \{ 0, \sigma(p) \} \). Clearly \(V \) is starshaped with 0 as a star-center. Set \(W = \bigcup_{p \in M} \{ t\sigma(p) \mid t > 1 \} \). Since \(\varphi \circ \sigma \) is a homeomorphism it follows that \(W \) is connected and \(V \cup W = \mathbb{R}^{n+1} - \varphi(M) \).

By the Jordan-Brouwer separation theorem \(\mathbb{R}^{n+1} - \varphi(M) \) consists of two open components, one bounded, \(X \), and one unbounded, \(Y \), such that \(\text{bdry } X \cup \varphi(M) = \text{bdry } Y \). Since \(V \) and \(W \) are connected, disjoint, \(V \cup W = \mathbb{R}^{n+1} - \varphi(M) \), and \(W \) is unbounded, it follows that \(V = X \) and \(W = Y \). Hence \(V \) is open and \(\text{bdry } V = \varphi(M) \).

We will now show that \(V \) is the only open starshaped set whose point-set boundary equals \(\varphi(M) \). Suppose \(V' \) is an open starshaped set such that \(\text{bdry } V' = \varphi(M) \). Since \(V' \) is starshaped it is connected and hence either \(V' \subset V \) or \(V' \subset W \). Now using the easily established facts that \(V' \) and \(\mathbb{R}^{n+1} - \text{cl } V' \) are open, \(V' \cup (\mathbb{R}^{n+1} - \text{cl } V') = \mathbb{R}^{n+1} \).
-\mathcal{g}(M), \mathbb{R}^{n+1} - \text{cl } V' \text{ is unbounded}, V \text{ and } W \text{ are the connected components of } \mathbb{R}^{n+1} - \mathcal{g}(M), \text{ it follows that } V' = V.

We have seen that an arbitrary point of \(Z = \mathbb{R}^{n+1} - \bigcup_{p \in M} T_p \) (which we took to be 0 by shifting the origin if necessary) is a star-center for \(V \), i.e. is in kernel \(V \). Hence \(Z \subseteq \text{kernel } V \). We will establish \(Z \subseteq \text{int}(\text{kernel } V) \) by showing that \(Z \) is open. To show this we merely have to show that an arbitrary point of \(Z \) (which we again take to be 0) is in an open set \(N \) contained in \(Z \), \(0 \in N \subseteq Z \). Consider the map \(k: TM \to \mathbb{R}^{n+1} \) given by

\[
k(v) = \mathcal{g}(\pi(v)) + \left. d\mathcal{g} \right|_{\pi(v)}(v)
\]

for all \(v \in TM \) where \(TM \equiv \text{the tangent bundle of } M \) and \(\pi: TM \to M \) is the canonical projection. Then \(Z = \mathbb{R}^{n+1} - k(TM) \). Set \(l = \sup_{p \in M} \left\| \mathcal{g}(p) \right\| \) which is finite since \(M \) is compact. Because \(k \) is continuous \(k^{-1}(B_1) \) is closed where \(B_1 = \{ x \in \mathbb{R}^{n+1} | \left\| x \right\| \leq 1 \} \). We may pull back a Riemannian metric via \(\mathcal{g} \), i.e. we can define an inner product for all pairs of vectors \(v, w \) such that \(\pi(v) = \pi(w) \) by setting \((v, w) = \left(d\mathcal{g} \right|_{\pi(v)}(v), d\mathcal{g} \right|_{\pi(v)}(w) \) and this inner product is clearly continuous. Set \(\left\| v \right\| = \sqrt{(v, v)} \) for each \(v \in TM \). Note that if \(\left\| v \right\| > 2l \) then

\[
\left\| k(v) \right\| = \left\| \mathcal{g}(\pi(v)) + \left. d\mathcal{g} \right|_{\pi(v)}(v) \right\|
\geq \left\| \left. d\mathcal{g} \right|_{\pi(v)}(v) \right\| - \left\| \mathcal{g}(\pi(v)) \right\|
\geq \left\| v \right\| - l > 2l - l = l.
\]

This shows that \(k^{-1}(B_1) \subseteq \{ v \in TM | \left\| v \right\| \leq 2l \} = Q \). But \(Q \) is compact since \(M \) is compact and the Tychonoff theorem is easily seen to carry over to this bundle situation. Hence, because \(k^{-1}(B_1) \) is closed it is also compact. Thus \(k(k^{-1}(B_1)) = B_1 \cap k(TM) \) is compact and hence closed. Finally

\[
0 \in N = \text{int } B_1 - k(TM) = \text{int } B_1 - B_1 \cap k(TM) \subset \mathbb{R}^{n+1} - k(TM) = Z
\]

and \(N = \text{int } B_1 - B_1 \cap k(TM) \) is clearly open. Hence \(Z \) is open and \(Z \subseteq \text{int} \text{kernel } V \) as we wished to show.

Next we will establish the converse inclusion \(Z \supseteq \text{int} \text{kernel } V \). Consider an arbitrary point of \(\text{int} \text{kernel } V \) which we may take to be 0. Next take an arbitrary point \(p \) of \(M \).

It follows from \(V \) being starshaped that \(\text{cl } V \) is also star-shaped. It is also easy to show that \(\text{kernel} \text{cl } V \supseteq \text{kernel } V \). Since \(0 \in \text{int} \text{kernel } V \) there is an \(\epsilon > 0 \) such \(D_\epsilon = \{ x \in \mathbb{R}^{n+1} | \left\| x \right\| < \epsilon \} \subset \text{kernel } V \). Then \(C = \bigcup_{\|x\| < \epsilon} \{ x, \mathcal{g}(p) \} \subseteq \text{cl } V \). Actually \(C \subseteq V \). To see
this, note first that \(C = \bigcup_{0 < \alpha < 1} \alpha(D_\omega + (1 - \alpha)\partial(p)) \) and is thus open. Secondly, it is easily seen that \(\text{int}(\text{cl } V) = V \). So we have \(C \subseteq \text{int}(\text{cl } V) = V \) as claimed.

Now suppose \(0 \in Z \). Then \(-\partial(p) \in \partial(V) \) and so there is a curve \(\gamma \) in \(M \) such that \(\gamma(0) = p \) and the tangent to \(\gamma \circ \gamma \) at \(0 \) is \(-\partial(p) \). It then follows that \((\gamma \circ \gamma)(t) \in C \) for sufficiently small positive \(t \). But this contradicts \(C \subset V \) and \(\partial(M) = \partial \bigcup_{r \in \mathbb{R}^{n+1}} V \). Hence we must have \(0 \in Z \) as we desired. Therefore \(\text{int}(\text{kernel } V) \subset Z \) and so \(\text{int}(\text{kernel } V) = Z \) is established.

Finally we will establish the converse assertion. Suppose \(\partial(M) = \partial \bigcup_{r \in \mathbb{R}^{n+1}} V \) for some open starshaped set \(V \subset \mathbb{R}^{n+1} \) such that \(\text{int}(\text{kernel } V) \neq \emptyset \). We wish to show that \(Z \neq \emptyset \).

Without loss of generality we may assume \(0 \in \text{int}(\text{kernel } V) \). It is now sufficient to show that \(0 \in \partial(V) \) for each \(p \in M \). Take a \(p \in M \). Since \(0 \in \text{int}(\text{kernel } V) \) there is an \(\epsilon > 0 \) such that \(\{ x \in \mathbb{R}^{n+1} \mid \|x\| < \epsilon \} \subset \text{kernel } V \). Consider the set \(C = \bigcup_{0 < \alpha < 1} \{ x, \partial(p) \} \). We will show that \(C \subset V \).

Let \(y = (1 - \alpha)x + \alpha \partial(p), \ 0 \leq \alpha < 1, \ \|x\| < \epsilon \), be an arbitrary point of \(C \). Since \(\partial(p) \in \partial \bigcup_{r \in \mathbb{R}^{n+1}} V \) there is a sequence \(x_m \) in \(V \) such that \(x_m \to \partial(p) \). The sequence \(y_m = (1 - \alpha)^{-1}(y - \alpha x_m) = x + (1 - \alpha)^{-1}(\partial(p) - x_m) \to x \) and hence \(\|y_m\| < \epsilon \) for some \(m \). Then \(y_m \in \text{kernel } V \) and so \(y = (1 - \alpha)y_m + \alpha x_m \in V \). Hence \(C \subset V \) as we wished to show.

Now the “curve argument” in the last paragraph of the proof of \(\text{int}(\text{kernel } V) = Z \) can be used here and it gives the desired conclusion, \(0 \in \partial(V) \). Hence \(0 \in Z \neq \emptyset \). This completes the proof of the theorem.

Bibliography

Indiana University, Bloomington, Indiana 47401