CAN A 2-COHERENT PEANO CONTINUUM SEPARATE E^3?

W. C. CHEWNING

Abstract. The fact that there are unicoherent continua which separate E^3 is well known, e.g., a circle with a spiral converging onto it is such a continuum. In this paper we extend this pathology by describing a Peano continuum which separates E^3 and has the property that however it is written as the union of two unicoherent Peano continua, their intersection is unicoherent.

An inductive definition of n-coherence has been given by Transue in [5] in such a way that 0-coherence is connectedness and 1-coherence is unicoherence plus local connectedness. A unicoherent, locally unicoherent (i.e., having a basis of unicoherent regions) set X is 2-coherent provided that however X is expressed as the union of two closed, locally connected, and unicoherent subsets A and B, the set $A \cap B$ is unicoherent.

Interesting results are obtained for 2-coherent sets: any unicoherent, locally unicoherent Peano continuum in E^3 which is not 2-coherent must separate E^3. Among the conjectures proposed by Transue are the following special cases:

Conjecture 1. A 2-coherent, unicoherent continuum in E^3 does not separate E^3.

Conjecture 2. Any retract of a 2-coherent space is itself 2-coherent.

In the introduction of [5], the author suggests that it is not known if the assumption of local unicoherence adds anything to the definition of 2-coherence. We show by an example that it does make a difference, and that the above conjectures are false without it. Let a space be called "2-coherent in the wide sense" if it satisfies the definition of 2-coherence except that the requirement of local unicoherence is omitted.

Consider the cylindrical shell $C = S^1 \times [0, 1] \times [0, 1]$ in E^3, where the middle factor refers to the altitude of C and the third factor to the thickness of C. Let $C_n = S^1 \times [0, 1] \times [1/2^{n+1}, 1/2^n]$, and remove from C_n an open solid rod R_n of diameter $1/2^{n+1}$, which is tangent to...
the helical line L_n where $L_n = \{(e^{2\pi n t}, t, 1/2^n) : 0 < t \leq 1, n \text{ even and } 0 \leq t < 1, n \text{ odd}\}$. The boundary of R_n in C_n is a tube T_n which is capped at the bottom or top, depending on whether n is even or odd. If $Y = C \setminus \bigcup_{n=1}^{\infty} R_n$ and the two sets $S^1 \times \{0\} \times \{0\}$ and $S^1 \times \{1\} \times \{0\}$ are each identified to a point, a quotient space X is obtained from Y, and X is the desired space. We carry out this identification in E^3 by removing the denoted rods from C, and then pinching its top and bottom annuli so that their inner circular boundaries are shrunk to points; thus X is embedded in E^3.

Let us call the quotient map q, and note that $q(S^1 \times [0, 1] \times \{0\}) = S$ is a 2-sphere. Moreover, S bounds one of the two complementary domains of X in E^3, and there is a retraction (the projection) of X onto S. Thus X, which we shall show to be 2-coherent in the wide sense, separates E^3 and allows a retraction onto the sphere S, which is not 2-coherent in either sense.

Lemma 1. If a unicoherent Peano continuum X is not 2-coherent in the wide sense, then there is an essential map $F: X \rightarrow S^2$.

Proof. If $X = A \cup B$, with A and B unicoherent Peano continua and $A \cap B$ is not unicoherent, then there is an essential map $f: A \cap B \rightarrow S^1$ [6, Chapter 8]. Consider S^1 as the equator of S^2 with N and Z the northern and southern hemispheres, respectively, of S^2. Then f has an extension $F_A: A \rightarrow N$ and an extension $F_B: B \rightarrow Z$ by the Tietze extension theorem. Then if $F = F_A \cup F_B$, F maps the proper triad $(X; A, B)$ into $(S^2; N, Z)$ and hence the following commutative diagram, with exact rows, exists: (Čech cohomology, integral coefficients)

$$
\begin{array}{cccccc}
0 &=& H^1(A) &+& H^1(B) &\rightarrow& H^1(A \cap B) &\rightarrow& H^2(X) \\
& & f^* \uparrow & & F^* \uparrow & & \\
0 &=& H^1(N) &+& H^1(Z) &\rightarrow& H^1(S^1) &\rightarrow& H^2(S^2) \\
\end{array}
$$

Since f is essential, f^* is nonzero, and δ is 1-1 so therefore F^* is nonzero and F must be essential. Lemma 1 was proven by Transue in [5] and is included here for completeness.

Theorem 1. X is 2-coherent in the wide sense, and is a unicoherent Peano continuum.

Proof. X is clearly compact and connected. Moreover, X is locally connected since it has a basis of connected open sets in the relative topology. If X were not unicoherent, there would be a simple closed curve $J \subset X$ which is a retract of X, and hence the
infinite cyclic group $H_1(J)$ would be a subgroup of $H_1(X)$. We show that $H_1(X) = 0$ (Čech homology, integral coefficients) to establish that X is unicoherent. Setting $P_n = q(C \setminus \bigcup_{k=1}^{n} R_k)$, we see that $\bigcap_{n=1}^{\infty} P_n = X$. By the continuity of Čech homology, $H_1(X) = \lim_{n\to\infty} H_1(P_n) = 0$ since each P_n is a strong deformation retract of a spherical shell $\approx S^2 \times [0, 1]$.

Now suppose that X were not 2-coherent in the wide sense; then $X = A \cup B$ with A and B unicoherent Peano continua and $A \cap B$ not unicoherent. We can construct the essential map $F: X \to S^2$ which was described in Lemma 1. Then F cannot be extended to a three cell containing X [1, p. 347] and so the homomorphism $F_*: H_2(X) \to H_2(S^2)$ is nonzero [4, p. 147].

We next show that the restriction of F to S maps S onto S^2. Let the set $U_n = X \setminus \bigcup_{k=1}^{n} q(C_k \setminus R_k)$; U_n is a neighborhood of S in X. Observe that there is a deformation retraction $r: X \to U_n$ obtained by squashing $C_1 \setminus R_1$ into $C_1 \cap C_5$, and then $C_2 \setminus R_2$ into $C_5 \cap C_9$, and so on, a finite number of times. Thus we have a commutative diagram

\[
\begin{array}{ccc}
H_2(X) & \xrightarrow{F_*} & H_2(S^2) \\
\downarrow{r_*} & & \downarrow{[F| \bigcup_{n}]_*} \\
H_2(U_n) & &
\end{array}
\]

and since F_* is nonzero, $[F| \bigcup_{n}]_*$ must also be nonzero. Hence $F|\bigcup_{n}: \bigcup_{n} \to S^2$ is an onto map for every integer n, so $F| S: S \to S^2$ is onto. Recalling the construction of F in Lemma 1, we see that neither A nor B can contain S, or else S would be mapped into one hemisphere of S^2.

Let p be a point of S which is not in A, and which is different from both the points $q(S^1 \times \{1\} \times \{0\})$ and $q(S^1 \times \{0\} \times \{0\})$; we call these points the “north” and “south” poles of X, respectively. Let R be a region about p which does not meet A. By the method of construction for X, for some integer N and all $n > N$, R must contain a “cross section” of every tube $q(T_n)$. Since B is unicoherent and contains R, B must contain that portion of each even numbered tube between R and the north pole of X, for $n > N$. Otherwise B could be retracted onto a simple closed curve in a tube T_n, contradicting the fact that each retract of a unicoherent Peano continuum is itself unicoherent [6, Chapter 8]. Similarly, B contains that portion of each odd numbered tube between R and the south pole of X, for $n > N$. However, the union of these portions of tubes mentioned is dense in $S = q(S^1 \times [0, 1] \times \{0\})$, and hence B contains S, a contradiction.
Conjecture 1 remains an interesting open problem. Transue has given an affirmative answer for polyhedra in [5]. The example in this paper indicates that the technique of approximation by polyhedra may not be a useful way to attack Conjecture 1 unless local unicoherence is somehow utilized. The author has extended Transue’s elegant proof that polyhedra obey Conjecture 1. Suppose that \(X \subseteq E^2 \) is a unicoherent Peano continuum, \(E^3 \setminus X \) has components \(A \) and \(B \), and there is a set \(T \subseteq X \) such that \(T = h(D \times [a, b]) \), \(h \) a homeomorphism, \(D \) a closed 2-cell, and \(a, b \) real numbers. If, in addition, \(\text{Fr}(A) \cap T = h(D \times \{a\}) \), \(\text{Fr}(B) \cap T = h(D \times \{b\}) \), and \(h(D \times (a, b)) \) is contained in the interior of \(X \), then \(X \) is not 2-coherent even if \(a \neq b \).

References