Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Quaternion constituents of group algebras


Author: Mark Benard
Journal: Proc. Amer. Math. Soc. 30 (1971), 217-219
MSC: Primary 20.80
DOI: https://doi.org/10.1090/S0002-9939-1971-0280609-0
MathSciNet review: 0280609
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper it is shown that each quaternion division algebra central over the rationals appears as a division ring constituent of some rational group algebra.


References [Enhancements On Off] (What's this?)

  • [1] Richard Brauer, Representations of finite groups, Lectures on Modern Mathematics, Vol. I, Wiley, New York, 1963, pp. 133–175. MR 0178056
  • [2] Walter Feit, Characters of finite groups, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR 0219636
  • [3] -, Representations of finite groups, Yale Lecture Notes, New Haven, Conn., 1969.
  • [4] K. Kronstein, Representations over q-adic and q-modular fields, J. Algebra (to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20.80

Retrieve articles in all journals with MSC: 20.80


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0280609-0
Keywords: Group algebra, rational quaternion algebra, irreducible character, Schur index, Brauer-Speiser Theorem, Hasse invariants, Brauer characters
Article copyright: © Copyright 1971 American Mathematical Society