Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Subharmonic versions of Fatou's theorem


Author: James L. Meek
Journal: Proc. Amer. Math. Soc. 30 (1971), 313-317
MSC: Primary 31.15; Secondary 30.00
DOI: https://doi.org/10.1090/S0002-9939-1971-0280728-9
MathSciNet review: 0280728
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A theorem of Fatou concerning the boundary behavior of bounded harmonic functions in the unit disk is extended to normal subharmonic functions. A question--which has been answered in the normal holomorphic and normal harmonic cases--concerning existence of Fatou points for normal subharmonic functions is posed.


References [Enhancements On Off] (What's this?)

  • [1] Maynard G. Arsove, The Lusin-Privalov theorem for subharmonic functions, Proc. London Math. Soc. (3) 14 (1964), 260-270. MR 28 #4136. MR 0160927 (28:4136)
  • [2] F. Bagemihl and W. Seidel, Koebe arcs and Fatou points of normal functions, Comment. Math. Helv. 36 (1961), 9-18. MR 25 #5183. MR 0141786 (25:5183)
  • [3] C. Carathéodory, Conformal representation, 2nd ed., Cambridge Tracts in Math. and Math. Phys., no. 28, Cambridge Univ. Press, New York, 1952. MR 13, 734. MR 0046435 (13:734a)
  • [4] Peter A. Lappan, Fatou points of harmonic normal functions and uniformly normal functions, Math. Z. 102 (1967), 110-114. MR 36 #5317. MR 0222265 (36:5317)
  • [5] O. Lehto and K. I. Virtanen, Boundary behavior and normal meromorphic functions, Acta. Math. 97 (1957), 47-65. MR 19, 403. MR 0087746 (19:403f)
  • [6] J. E. Littlewood, On functions subharmonic in a circle. II, Proc. London Math. Soc. (2) 28 (1928), 383-394.
  • [7] D. C. Rung, Asymptotic values of normal subharmonic functions, Math. Z. 84 (1964), 9-15. MR 31 #3622. MR 0179374 (31:3622)
  • [8] Elmer Tolsted, Limiting values of subharmonic functions, Proc. Amer. Math. Soc. 1 (1950), 636-647. MR 12, 609. MR 0039862 (12:609a)
  • [9] M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo, 1959. MR 22 #5712. MR 0114894 (22:5712)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 31.15, 30.00

Retrieve articles in all journals with MSC: 31.15, 30.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0280728-9
Keywords: Fatou point, Fatou value, normal function, subharmonic function, hyperbolic metric, hypercycle, radial limit
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society