On a geometric property of the set of invariant means on a group

Author:
Ching Chou

Journal:
Proc. Amer. Math. Soc. **30** (1971), 296-302

MSC:
Primary 46.80; Secondary 42.00

DOI:
https://doi.org/10.1090/S0002-9939-1971-0283584-8

MathSciNet review:
0283584

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If *G* is a discrete group and then denotes the homeomorphism of onto induced by left multiplication by *x*. A subset *K* of is said to be *invariant* if it is closed, nonempty and for each . Let denote the set of left invariant means on *G*. (They can be considered as measures on .)

*Let G be a countably infinite amenable group and let K be an invariant subset of* . *Then the nonempty* -*compact convex set* *has no exposed points (with respect to* -*topology*). *Therefore, it is infinite dimensional*.

**[1]**A. P. Calderon,*A general ergodic theorem*, Ann. of Math. (2)**58**(1953), 182–191. MR**0055415**, https://doi.org/10.2307/1969828**[2]**Ching Chou,*On the size of the set of left invariant means on a semi-group*, Proc. Amer. Math. Soc.**23**(1969), 199–205. MR**0247444**, https://doi.org/10.1090/S0002-9939-1969-0247444-1**[3]**Ching Chou,*On a conjecture of E. Granirer concerning the range of an invariant mean*, Proc. Amer. Math. Soc.**26**(1970), 105–107. MR**0260899**, https://doi.org/10.1090/S0002-9939-1970-0260899-X**[4]**Ching Chou,*On topologically invariant means on a locally compact group*, Trans. Amer. Math. Soc.**151**(1970), 443–456. MR**0269780**, https://doi.org/10.1090/S0002-9947-1970-0269780-8**[5]**Mahlon M. Day,*Amenable semigroups*, Illinois J. Math.**1**(1957), 509–544. MR**0092128****[6]**Mahlon M. Day,*Fixed-point theorems for compact convex sets*, Illinois J. Math.**5**(1961), 585–590. MR**0138100****[7]**L. R. Fairchild,*Extreme invariant means and minimal sets in the Stone-Čech compactification of a semigroup*, Thesis, University of Illinois, Urbana, I11., 1970.**[8]**E. Granirer,*On amenable semigroups with a finite-dimensional set of invariant means. I*, Illinois J. Math.**7**(1963), 32–48. MR**0144197****[9]**Meyer Jerison,*The set of all generalized limits of bounded sequences*, Canad. J. Math.**9**(1957), 79–89. MR**0083697**, https://doi.org/10.4153/CJM-1957-012-x**[10]**V. L. Klee Jr.,*Extremal structure of convex sets. II*, Math. Z.**69**(1958), 90–104. MR**0092113**, https://doi.org/10.1007/BF01187394**[11]**I. Namioka,*Følner’s conditions for amenable semi-groups*, Math. Scand.**15**(1964), 18–28. MR**0180832**, https://doi.org/10.7146/math.scand.a-10723**[12]**Ralph A. Raimi,*Minimal sets and ergodic measures in 𝛽𝑁-𝑁*, Bull. Amer. Math. Soc.**70**(1964), 711–712. MR**0166331**, https://doi.org/10.1090/S0002-9904-1964-11180-0**[13]**Walter Rudin,*Averages of continuous functions on compact spaces*, Duke Math. J.**25**(1958), 197–204. MR**0098313****[14]**A. A. Tempel′man,*Ergodic theorems for general dynamical systems*, Dokl. Akad. Nauk SSSR**176**(1967), 790–793 (Russian). MR**0219700****[15]**Carroll Wilde and Klaus Witz,*Invariant means and the Stone-Čech compactification*, Pacific J. Math.**21**(1967), 577–586. MR**0212552**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46.80,
42.00

Retrieve articles in all journals with MSC: 46.80, 42.00

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1971-0283584-8

Keywords:
Invariant means,
amenable groups,
mean ergodic theorem,
exposed points,
Stone-Čech compactification

Article copyright:
© Copyright 1971
American Mathematical Society