On a geometric property of the set of invariant means on a group

Author:
Ching Chou

Journal:
Proc. Amer. Math. Soc. **30** (1971), 296-302

MSC:
Primary 46.80; Secondary 42.00

DOI:
https://doi.org/10.1090/S0002-9939-1971-0283584-8

MathSciNet review:
0283584

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If *G* is a discrete group and then denotes the homeomorphism of onto induced by left multiplication by *x*. A subset *K* of is said to be *invariant* if it is closed, nonempty and for each . Let denote the set of left invariant means on *G*. (They can be considered as measures on .)

*Let G be a countably infinite amenable group and let K be an invariant subset of* . *Then the nonempty* -*compact convex set* *has no exposed points (with respect to* -*topology*). *Therefore, it is infinite dimensional*.

**[1]**A. P. Calderón,*A general ergodic theorem*, Ann. of Math. (2)**58**(1953), 182-191. MR**14**, 1071. MR**0055415 (14:1071a)****[2]**C. Chou,*On the size of the set of left invariant means on a semigroup*, Proc. Amer. Math. Soc.**23**(1969), 199-205. MR**40**#710. MR**0247444 (40:710)****[3]**-,*On a conjecture of E. Granirer concerning the range of an invariant mean*, Proc. Amer. Math. Soc.**26**(1970), 105-107. MR**0260899 (41:5519)****[4]**-,*On topologically invariant means on a locally compact group*, Trans. Amer. Math. Soc.**151**(1970), 443-456. MR**0269780 (42:4675)****[5]**M. M. Day,*Amenable semigroups*, Illinois J. Math.**1**(1957), 509-544. MR**19**, 1067. MR**0092128 (19:1067c)****[6]**-,*Fixed-point theorems for compact convex sets*, Illinois J. Math.**5**(1961), 585-590. MR**25**#1547. MR**0138100 (25:1547)****[7]**L. R. Fairchild,*Extreme invariant means and minimal sets in the Stone-Čech compactification of a semigroup*, Thesis, University of Illinois, Urbana, I11., 1970.**[8]**E. Granirer,*On amenable semigroups with a finite-dimensional set of invariant means*. I, II, Illinois J. Math.**7**(1963), 32-58. MR**26**#1744; 1745. MR**0144197 (26:1744)****[9]**M. Jenison,*The set of all generalized limits of bounded sequences*, Canad. J. Math.**9**(1957), 79-89. MR**0083697 (18:747g)****[10]**V. L. Klee, Jr.,*Extremal structure of convex sets*. II, Math. Z.**69**(1958), 90-104. MR**19**, 1065. MR**0092113 (19:1065b)****[11]**I. Namioka,*Følner's conditions for amenable semi-groups*, Math. Scand.**15**(1964), 18-28. MR**31**#5062. MR**0180832 (31:5062)****[12]**R. A. Raimi,*Minimal sets and ergodic measures in*, Bull. Amer. Math. Soc.**70**(1964), 711-712. MR**29**#3608. MR**0166331 (29:3608)****[13]**W. Rudin,*Averages of continuous functions on compact spaces*, Duke Math. J.**25**(1958), 197-204. MR**20**#4774. MR**0098313 (20:4774)****[14]**A. A. Tempel'man,*Ergodic theorems for general dynamic systems*, Dokl. Akad. Nauk SSSR**176**(1967), 790-793 = Soviet Math. Dokl.**8**(1967), 1213-1216. MR**36**#2779. MR**0219700 (36:2779)****[15]**C. Wilde and K. Witz,*Invariant means and the Stone-Čech compactification*, Pacific J. Math.**21**(1967), 577-586. MR**35**#3423. MR**0212552 (35:3423)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46.80,
42.00

Retrieve articles in all journals with MSC: 46.80, 42.00

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1971-0283584-8

Keywords:
Invariant means,
amenable groups,
mean ergodic theorem,
exposed points,
Stone-Čech compactification

Article copyright:
© Copyright 1971
American Mathematical Society