Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Theorems of Accola type for higher dimensional manifolds

Author: Su-shing Chen
Journal: Proc. Amer. Math. Soc. 30 (1971), 479-483
MSC: Primary 32.40
MathSciNet review: 0284611
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Two theorems of Accola concerning automorphisms of Riemann surfaces can be extended to higher dimensional manifolds. Formulas are obtained concerning signatures of compact oriented 4k-dimensional differentiable manifolds and Euler-Poincaré characteristics of compact differentiable manifolds and compact complex manifolds.

References [Enhancements On Off] (What's this?)

  • [1] R. D. M. Accola, Two theorems on Riemann surfaces with noncyclic automorphism groups, Proc. Amer. Math. Soc. 25 (1970), 598-602. MR 41 #3747. MR 0259105 (41:3747)
  • [2] W. L. Baily, Jr., On the imbedding of V-manifolds in projective space, Amer. J. Math. 79 (1957), 403-430. MR 20 #6538. MR 0100104 (20:6538)
  • [3] P. E. Conner, Concerning the action of a finite group, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 349-351. MR 18, 61. MR 0079272 (18:61a)
  • [4] F. Hirzebruch, Topological methods in algebraic geometry, 3rd ed., Die Grundlehren der math. Wissenschaften, Band 131, Springer-Verlag, Berlin and New York, 1966. MR 34 #2573. MR 0202713 (34:2573)
  • [5] -, The signature of ramified coverings, (Papers in honor of K. Kodaira) Global Analysis (Princeton, 1969), Univ. of Tokyo Press, Tokyo, 1969, pp. 253-265. MR 41 #2707. MR 0258060 (41:2707)
  • [6] I. Satake, On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 359-363. MR 18, 144. MR 0079769 (18:144a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32.40

Retrieve articles in all journals with MSC: 32.40

Additional Information

Keywords: Differentiable manifold, complex manifold, analytic automorphism, diffeomorphism, complex harmonic form, Euler-Poincaré characteristic
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society