Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Cyclic atoms in orthomodular lattices


Author: Donald E. Catlin
Journal: Proc. Amer. Math. Soc. 30 (1971), 412-418
MSC: Primary 06.40
MathSciNet review: 0285457
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ P(H)$ denote the projection lattice of a separable Hilbert space H. For each $ {\text{x}} \in H$, let $ {P_{\text{x}}}$ denote the projection onto the one dimensional subspace generated by x. If B is a Boolean sublattice of $ P(H)$, then it is a theorem that whenever B is maximal in $ P(H)$ there exists a vector $ {{\text{x}}_0} \in H$, called a cyclic vector for B, such that the join in $ P(H)$ of all the $ {P_{Q({{\text{x}}_0})}}$ as Q ranges through B is the identity operator I. In this paper we show that this theorem is an immediate corollary of a more general theorem in orthomodular lattice theory. In addition, a final theorem in the paper makes clear the necessity for the separability assumption on H.


References [Enhancements On Off] (What's this?)

  • [1] Donald E. Catlin, Irreducibility conditions on orthomodular lattices, J. Natur. Sci. and Math. 8 (1968), 81–87. MR 0233743
  • [2] David J. Foulis, A note on orthomodular lattices, Portugal. Math. 21 (1962), 65–72. MR 0148581
  • [3] R. J. Greechie, On the structure of orthomodular lattices satisfying the chain condition, J. Combinatorial Theory 4 (1968), 210–218. MR 0227056
  • [4] M. F. Janowitz, Quantifiers and orthomodular lattices, Pacific J. Math. 13 (1963), 1241–1249. MR 0156800
  • [5] M. F. Janowitz, Residuated closure operators, Portugal. Math. 26 (1967), 221–252. MR 0249331
  • [6] G. W. Mackey, The mathematical foundations of quantum mechanics, Benjamin, New York, 1963, pp. 86-87. MR 27 #5501.
  • [7] Otton Martin Nikodým, The mathematical apparatus for quantum-theories, based on the theory of Boolean lattices, Die Grundlehren der mathematischen Wissenschaften, Band 129, Springer-Verlag New York, Inc., New York, 1966. MR 0224338

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 06.40

Retrieve articles in all journals with MSC: 06.40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0285457-3
Keywords: Separable Hilbert space, cyclic vector, orthomodular lattice, Sasaki projection, atomic lattice, complete lattice, atomic bisection property, atomic projection property, block, cyclic atom, hyperoctant property
Article copyright: © Copyright 1971 American Mathematical Society