Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the direct product of $ V$-groups


Author: Donald P. Minassian
Journal: Proc. Amer. Math. Soc. 30 (1971), 434-436
MSC: Primary 06.75
DOI: https://doi.org/10.1090/S0002-9939-1971-0286727-5
MathSciNet review: 0286727
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let G and H be ordered groups such that every full order on a subgroup extends to a full order on the group; then the direct product, $ G \times H$, need not have this property. In fact a stronger result holds.


References [Enhancements On Off] (What's this?)

  • [1] L. Fuchs and E. Sasiada, Note on orderable groups, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 7 (1964), 13-17. MR 30 #3925. MR 0173715 (30:3925)
  • [2] M. I. Kargapolov, Completely ordered groups, Algebra i Logika Sem. 1 (1962), no. 2, 16-21. (Russian) MR 27 #2569. MR 0152592 (27:2569)
  • [3] A. I. Kokorin, On the theory of completely ordered groups, Ural. Gos. Univ. Mat. Zap. 4 (1963), no. 3, 25-29. (Russian) MR 32 #1271. MR 0183795 (32:1271)
  • [4] D. P. Minassian, Recent developments in the theory of fully ordered groups, Doctoral Thesis, University of Michigan, Ann Arbor, Mich., 1967.
  • [5] A. A. Terehov, Completely orderable groups, Dokl. Akad. Nauk. SSSR 129 (1959), 34-36. (Russian) MR 22 #734. MR 0109849 (22:734)
  • [6] -, The structure of locally solvable, completely ordered groups, Algebra i Logika Sem. 1 (1962), no. 2, 10-15. (Russian) MR 27 #2568. MR 0152591 (27:2568)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 06.75

Retrieve articles in all journals with MSC: 06.75


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0286727-5
Keywords: Partially ordered group, fully ordered group, V-group, $ {V^ \ast }$-group, VAN-group, VN-group
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society