THE GENERALIZED INVERSE OF A NONNEGATIVE MATRIX

R. J. PLEMMONS AND R. E. CLINE

Abstract. Necessary and sufficient conditions are given in order that a nonnegative matrix have a nonnegative Moore-Penrose generalized inverse.

1. Introduction. Let A be an arbitrary $m \times n$ real matrix. Then the Moore-Penrose generalized inverse of A is the unique $n \times m$ real matrix A^+ satisfying the equations

$$A = AA^+A, \quad A^+ = A^+AA^+, \quad (AA^+)^T = AA^+, \quad \text{and} \quad (A^+A)^T = A^+A.$$

The properties and applications of A^+ are described in a number of papers including Penrose [7], [8], Ben-Israel and Charnes [1], Cline [2], and Greville [6]. The main value of the generalized inverse, both conceptually and practically, is that it provides a solution to the following least squares problem: Of all the vectors x which minimize $\|b - Ax\|$, which has the smallest $\|x\|^2$? The solution is $x = A^+b$.

If A is nonnegative (written $A \geq 0$), that is, if the components of A are all nonnegative real numbers, then A^+ is not necessarily nonnegative. In particular, if $A \geq 0$ is square and nonsingular, then $A^+ = A^{-1} \geq 0$ if and only if A is monomial, i.e., A can be expressed as a product of a diagonal matrix and a permutation matrix, so that $A^{-1} = DA^T$ for some diagonal matrix D with positive diagonal elements. The main purpose of this paper is to give necessary and sufficient conditions on $A \geq 0$ in order that $A^+ \geq 0$. Certain properties of such nonnegative matrices are then derived.

2. Results. In order to simplify the discussion to follow, it will be convenient to introduce a canonical form for a nonnegative symmetric
idempotent matrix. Flor [5] has shown that if \(E\) is any nonnegative idempotent matrix of rank \(r\), then there exists a permutation matrix \(P\) such that

\[
PEP^T = \begin{pmatrix}
J & JB & 0 & 0 \\
0 & 0 & 0 & 0 \\
AJ & AJB & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

where \(A\) and \(B\) are arbitrary nonnegative matrices of appropriate sizes and

\[
J = \begin{pmatrix}
J_1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & J_r
\end{pmatrix}
\]

with each \(J_r\) a nonnegative idempotent matrix of rank 1. This gives the following lemma.

Lemma 1. Let \(E \succeq 0\) be a symmetric idempotent matrix of rank \(r\) with \(q\) nonzero rows. Then there exists integers \(\lambda_1, \cdots, \lambda_r\) and a permutation matrix \(P\) such that \(q = \lambda_1 + \cdots + \lambda_r\) and such that \(PEP^T\) has the form

(1) \[
PEP^T = \begin{pmatrix}
J_1 & 0 & & & \\
\vdots & \ddots & \vdots & & \\
0 & \cdots & J_r & 0 & \\
& & & \ddots & \\
& & & & \ddots & \\
0 & 0 & & & 0
\end{pmatrix}
\]

where each \(J_i\) is a \(\lambda_i \times \lambda_i\) positive idempotent matrix of rank 1.

The main result is given next. The theorem characterizes \(A \succeq 0\) so that \(A^+ \succeq 0\), and its proof indicates a method by which such an \(A^+\) can be constructed readily.

Theorem 1. Let \(A\) be an \(m \times n\) nonnegative matrix of rank \(r\). Then the following statements are equivalent.

(i) \(A^+\) is nonnegative.
(ii) There exists a permutation matrix P such that PA has the form
\[
PA = \begin{pmatrix}
B_1 \\
\cdot \\
\cdot \\
B_r \\
0
\end{pmatrix}
\]
where each B_i has rank 1 and where the rows of B_i are orthogonal to the rows of B_j whenever $i \neq j$.

(iii) $A^+ = DA^T$ for some diagonal matrix D with positive diagonal elements.

PROOF. Suppose (i) holds so that $A, A^+ \succeq 0$. Since $E = AA^+$ is a symmetric idempotent, there exists a permutation matrix P so that $K = PEPT$ has the form (1). Let $B = PA$. Then $B^+ = A^+P^T$, $BB^+ = K$, $KB = B$, and $B^+K = B^+$. Now B can be partitioned into the form (2), where r is the rank of A and where each B_i, $1 \leq i \leq r$, is a $\lambda_i \times n$ matrix with no zero rows, since A and B have the same number of nonzero rows. It remains to show each B_i has rank 1 and $B_iB_j^T = 0$, for $1 \leq i \neq j \leq r$. Let $C = B^+$. Then C can be partitioned into the form
\[
C = (C_1, \cdots, C_r, 0)
\]
where, for $1 \leq i \leq r$, C_i is an $n \times \lambda_i$ matrix with no zero columns. Moreover, since CB is symmetric, a column of B is nonzero if and only if the corresponding row of C is nonzero. Now $KB = B$ implies that $J_iB_i = B_i$, so that B_i has rank 1, for $1 \leq i \leq r$. It remains to show that the rows of B_i are orthogonal to the rows of B_j for $i \neq j$. Since $BC = K$ has the form (1),
\[
B_iC_j = J_i, \quad \text{if} \quad i = j, \quad \text{and}
\]
\[
= 0, \quad \text{if} \quad i \neq j,
\]
for $1 \leq i, j \leq r$. Suppose the lth column of B_i is nonzero. Then $B_iC_k = 0$ for $k \neq i$ implies that the lth row of C_k is zero. However, since the lth row of C is nonzero, the lth row of C_i is nonzero. In this case, the lth column of B_k is zero for all $k \neq i$, since $B_kC_i = 0$. Thus
\[
B_iB_j^T = 0 \quad \text{for all} \quad 1 \leq i \neq j \leq r,
\]
and (ii) is established.

2 Note that the zero block may not be present.
Now assuming (ii) holds, let \(B = PA \) have the form (2). Then for
\[1 \leq i \leq r, \]
there exist column vectors \(x_i, y_i \) such that \(B_i = x_i y_i^T \). Furthermore, \(B_i^+ \) is the nonnegative matrix
\[B_i^+ = (\|x_i\|_2^2 \|y_i\|_2^2)^{-1}B_i^T \]
and moreover \(B^+ = (B_1^+, \cdots, B_r^+, 0) \), since \(B_i B_j^T = 0 \) for \(i \neq j \). In particular then, \(B^+ = DB^T \) where \(D \) is a diagonal matrix with positive diagonal elements and thus \(A^+ = DA^T \), yielding (iii).

Clearly (iii) implies (i) so the proof is complete.

The next theorem considers doubly stochastic matrices, that is, square matrices \(A \geq 0 \) whose row sums and column sums are 1. The matrix \(A \geq 0 \) is said to be diagonally equivalent to a doubly stochastic matrix if there exist diagonal matrices \(D_1 \) and \(D_2 \) such that \(D_1 A D_2 \) is doubly stochastic. Classes of nonnegative matrices with this property have been the subject of several recent papers (for example, see Djoković [4]). Part of the following theorem identifies another such class.

Theorem 2. Let \(A \geq 0 \) be square with no zero rows or columns. If \(A^+ \geq 0 \) then \(A \) is diagonally equivalent to a doubly stochastic matrix. Moreover, if \(A \) is doubly stochastic then \(A^+ \) is doubly stochastic if and only if the equation \(A = AXA \) has a doubly stochastic solution, in which case \(A^+ = A^T \).

Proof. The first statement follows since there exist permutation matrices \(P \) and \(Q \) such that
\[
P A Q = \begin{pmatrix}
B_1 & & 0 \\
& \ddots & \\
0 & & B_r
\end{pmatrix}
\]
where each \(B_i \) is a positive square matrix.

For the second statement note that a doubly stochastic idempotent matrix \(E \) is necessarily symmetric; for in particular, there exists a permutation matrix \(P \) such that \(PEP^T \) has the form (1), where each row and column is nonzero and where each \(J_i \) is a positive, idempotent doubly stochastic matrix of rank 1. Then each entry of \(J_i \) is \(1/\lambda_i \) so that \(PEP^T \) and, accordingly, \(E \) are symmetric matrices. This means that \(A^+ \) is the only possible doubly stochastic solution to the equations \(A = AXA \) and \(Y = YAY \), since \(AY \) and \(YA \) are symmetric and \(A^+ \) is unique. Thus \(A^+ \) is doubly stochastic if and only if \(A = AXA \) has a doubly stochastic solution, in which case \(A^+ = XAX \), and so \(A^+ = A^T \) by Theorem 1.

The final result determines the singular values of \(A \) (i.e., the positive square roots of the nonzero eigenvalues of \(A^T A \)) whenever \(A^+ \geq 0 \).
Theorem 3. Let \(A \preceq 0 \) be an \(m \times n \) real matrix with \(A^+ \succeq 0 \) and let \(PA \) have the form (2). Let \(\{x_i, y_i\}_{i=1}^r \) be column vectors so that \(B_i = x_i y_i^T \) for \(1 \leq i \leq r \). Then the singular values of \(A \) are the numbers \(\|x_i\| \cdot \|y_i\| \).

Proof. The eigenvalues of \(AA^T \) are the eigenvalues of \(BB^T \). But these are the eigenvalues of the matrices \(B_i B_i^T \) for \(1 \leq i \leq r \), that is, the numbers \(\|x_i\|^2 \cdot \|y_i\|^2 \).

References