SEMI-LOCAL-CONNECTEDNESS AND CUT POINTS IN METRIC CONTINUA

E. D. SHIRLEY

Abstract. In the first section of this paper, the notion of a space being rational at a point is generalized to what is here called quasi-rational at a point. It is shown that a compact metric continuum which is quasi-rational at each point of a dense subset of an open set is both connected im kleinen and semi-locally-connected on a dense subset of that open set. In the second section a $G_δ$ set is constructed such that every point in the $G_δ$ at which the space is not semi-locally-connected is a cut point. A condition is given for this $G_δ$ set to be dense. This condition, in addition to requiring that the space be not semi-locally-connected at any point of a dense $G_δ$ set, gives a sufficient condition for the space to contain a $G_δ$ set of cut points. The condition generalizes that given by Grace.

1. Throughout this paper M will be taken to be a compact metric continuum. Many of the lemmas, however, can be proven with less hypotheses. Lemma 2, for example, requires only that the sets P_x (defined below) be subcontinua of M. Compact Hausdorff is sufficient for this to happen [4].

Let x, y, and z be points of M (not necessarily distinct). The point x cuts between y and z in M when every subcontinuum of M which contains both y and z must also contain x. The point x is a cut point of M when x cuts between two points distinct from x. M is said to be aposyndetic (semi-locally-connected) at x with respect to y if and only if there is a subcontinuum of M with x (y) in its interior that does not contain y (x). M is aposyndetic (semi-locally-connected) at x when it is aposyndetic (semi-locally-connected) at x with respect to every other point. Finally, M is connected im kleinen at x when each neighborhood of x contains a closed neighborhood of x which is also connected. One should note that when M is connected im kleinen at a point, it is also aposyndetic at that point. For $x \in M$, P_x denotes $\{y \in M \mid M$ is not aposyndetic at y with respect to $x\}$, and for $T \subseteq M$, P_T denotes $\bigcap \{H \mid T \subseteq H^0$ and H is a
subcontinuum of \(M \}). Clearly \(M \) is semi-locally-connected at \(x \) if and only if \(P_x = \{x\} \). As noted above, \(P_x \) is a subcontinuum of \(M \).

Lemma 1.1. If \(T \) is a subcontinuum of \(M \) and \(x \) is a point of \(M \), then \(x \in P'_T \) if and only if \(P_x \cap T \neq \emptyset \).

Proof. Suppose \(x \in P'_T \). If \(P_x \cap T = \emptyset \), then \(M \) is aposyndetic at every point of \(T \) with respect to \(x \). By the definition of aposyndetic and the compactness of \(T \) we see that \(T \) can be covered by the interior of a finite number of continua \(A_1, \ldots, A_n \), where each \(A_i \) meets \(T \) and does not contain \(x \). Now \(T \cup \bigcup_{i=1}^n A_i \) is a subcontinuum of \(M \) containing \(T \) in its interior, and hence \(x \in P'_T \subseteq T \cup \bigcup_{i=1}^n A_i \). Since \(x \notin A_i \), we have \(x \in T \), and so \(x \in P_x \cap T = \emptyset \). This contradiction shows \(P_x \cap T \neq \emptyset \).

Conversely, suppose that for some \(x \in M \), \(P_x \cap T \neq \emptyset \), say \(y \in P_x \cap T \). Let \(T \subseteq H^0 \) where \(H \) is a subcontinuum of \(M \). Then \(y \in H^0 \). Since \(y \in P_x \), \(M \) is not aposyndetic at \(y \) with respect to \(x \). It follows that \(x \in H \). Thus \(x \in P'_T \). □

Lemma 1.2. If \(T \) is a subcontinuum of \(M \), then for \(z \in (P'_T)^0 \) and \(y \in M - T \) we have \(z \in P_v \) implies \(y \in P_z \).

Proof. Suppose \(y \notin P_z \) and \(z \in P_v \). Then there is a continuum \(H \) containing \(y \) in its interior which does not contain \(z \). Let \(U \) be an open neighborhood of \(y \) in \(H^0 \cap (M - T) \), and let \(L \) be the component of \(M - U \) containing \(T \). Suppose \(x \in (M - H) \cap P'_T \). Then in particular \(P_x \cap U \neq \emptyset \). If \(x \notin L \), then \(L \) is a proper subset of \(P_x \cup L \). Hence \(P_x \cap U \neq \emptyset \). Let \(s \in P_x \cap U \), then \(s \in H^0 \) and thus \(x \in H \). With this contradiction we conclude that \((M - H) \cap P'_T \subseteq L \). Thus \(z \in (M - H) \cap (P'_T)^0 \subseteq L^0 \) and, of course, \(z \in P_v \). This implies \(y \in L \) which contradicts the fact that \(y \in U \subseteq M - L \). □

Lemma 1.3. Let \(V \) be an open point set of \(M \). \(M \) is semi-locally-connected on a dense subset of \(V \) if and only if for each open point set \(W \) in \(V \), there is a finite number of continua covering \(\partial W \) but not all of \(W \).

Proof. That this condition is necessary is immediate, for if \(W \) is an open point set of \(V \), then there is a point \(x \in W \) at which \(M \) is semi-locally-connected. Thus \(M \) is aposyndetic at each point of \(\partial W \) with respect to \(x \). Since \(\partial W \) is compact we can conclude there is a finite number of continua covering \(\partial W \) with their interior but not containing \(x \).

Conversely let \(W \) be any open point set of \(V \). We will find a point \(x \in W \) at which \(M \) is semi-locally-connected. By the hypothesis we can...
choose open point sets W_i and continua H^i_1, \cdots, H^i_n, such that

1. $W_i \subseteq W,$
2. $\partial W_i \subseteq \bigcup_{j=1}^{n_i} H^j_i,$
3. $\overline{W}_{i+1} \subseteq W_i - \bigcup_{j=1}^{n_i} H^j_i,$
4. $x, y \in W_i$ implies $d(x, y) \leq 1/i.$

Let $x \in \bigcap W_i$. For $y \neq x$, choose k such that $y \notin N_{2/k}(x)$ ($N_r(x)$ is the open ball with center x and radius r). Then $x \in (W_k - \bigcup_{j=1}^{n_k} H^j_k) = U_k$ and $y \in M - U$. Now each component of $M - U$ meets ∂U which is in $\bigcup_{j=1}^{n_k} H^j_k$. Thus $M - U$ has only a finite number of components (each component of $M - U$ contains at least one H^j_k). Since $y \in M - U$, y is in the interior of the component of $M - U$ containing y. Since this component does not contain x, M is semi-locally-connected at x with respect to y. It follows that M is semi-locally-connected at x which completes the proof. □

M is said to be quasi-rational at x if and only if for each open neighborhood W of x there is an open neighborhood U of x in W such that $W - U$ contains a closed set which is a countable union of continua and which separates U from $M - W$.

Lemma 1.4. If M is quasi-rational on a dense subset of an open point set V of M, then M is connected im kleinen on a dense subset of V.

Proof. Let W be an open point set in V. We will show W contains a point at which M is connected im kleinen. W contains a point at which M is quasi-rational. Thus there is an open point set U and continua T_1, T_2, \cdots such that $\bigcup T_i \subseteq W - U$ is closed and separates U from $M - W$. Since each component of $M - U$ meets some T_i, we see U is covered by a countable number of continua in W. One of these continua must contain an open subset of U. The above proof procedure allows us to verify that there are continua H_1, H_2, \cdots in W such that for each positive integer i, $H_{i+1} \subseteq H^i_i$ and the diameter of H_i is $\leq 1/i$. Let $x \in \bigcap H_i$. Then since $x \in H^0_i$ for each i and for each neighborhood G of x there exists an integer i such that H_i is contained in G, M is connected im kleinen at x. □

Theorem 1.1. If M is quasi-rational on a dense subset of an open point set V then M is semi-locally-connected on a dense subset of V.

Proof. Suppose not. By Lemma 1.3 there is an open point set W in V such that if ∂W is covered by a finite number of continua, then they cover all of W. This implies in particular that $P_x \cap \partial W \neq \emptyset$ for all $x \in W$. Now let U be an open point set in W which is separated from $M - W$ by a countable union of continua, $\bigcup T_i$, which is a closed subset of $W - U$. Since P_x is connected and $P_x \cap \partial W \neq \emptyset$ for $x \in W$, for $x \in U$ we have $P_x \cap \bigcup T_i \neq \emptyset$. Let $K_i = \{x \in U \mid P_x \cap T_i \neq \emptyset\}$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
It is easily seen that K_i is a closed subset of U (relative topology) for each i [4, Theorem 1]. Since the K_i‘s form a countable cover of U, it follows that for some i, $K_i^0 \neq \emptyset$. By Lemma 1.1 we see $K_i^0 \subseteq P_{T_i} \cap (M - T_i)$. By Lemma 1.4 there is a point $x \in U \cap (P_{T_i})^0$ at which M is apopsyndetic. Since $P_x \cap \partial W \neq \emptyset$ and P_x is connected, there is a point $y \in U \cap (P_{T_i})^0 \cap P_x$ different from x. By Lemma 1.2, $x \in P_y$ which contradicts the fact that M is apopsyndetic at x with respect to y. □

2. In the following a G_δ set is constructed such that every point in the G_δ at which M is not semi-locally-connected is a cut point. Then it is proven that under certain conditions this G_δ is dense. In this section y is a fixed point of M. $C(x, i)$ is used to denote the component of $M - N_{1/i}(x)$ containing y, and when it is used it is assumed that $y \in M - N_{1/i}(x)$. Let $G_n = \{z \in M \mid$ there is a point $x \in M$ and integers i, j such that $d(x, z) < 1/n, i > n,$ and $C(x, i) \subseteq C(z, j)^0\}$ and let $G = \bigcap G_n$.

Lemma 2.1. G_n is an open set for each n.

Proof. Let $z \in G_n$. There is a point x of M and integers i, j such that $d(x, z) < 1/n$, and $C(x, i) \subseteq C(z, j)^0$. $N_{1/n}(x) \cap N_{1/j}(z)$ is a neighborhood of z. For $s \in N_{1/n}(x) \cap N_{1/j}(z)$ we have $d(x, z) < 1/n$, and we can find a k so that $N_{1/k}(s) \subseteq N_{1/j}(z)$. Hence $C(z, j) \subseteq C(s, k)$. It follows that $C(s, i) \subseteq C(z, j)^0 \subseteq C(s, k)^0$, and thus $s \in G_n$. □

Lemma 2.2. If $z \in G$ and z is not a cut point, then M is semi-locally-connected at z.

Proof. Suppose $z \in G$ is not a cut point. For each positive integer n there exists a point x_n and integers i_n, j_n such that $d(x_n, z) < 1/n, i_n > n$ and $C(x_n, i_n) \subseteq C(z, j_n)^0$. Now $C(z, j_n)$ is a continuum containing z, so $P_x \subseteq \bigcap_n (M - C(z, j_n)^0) \subseteq \bigcap_n (M - C(x_n, i_n))$. Suppose $s \in \bigcap_n (M - C(x_n, i_n))$ and $s \neq z$. Let H be a subcontinuum of M joining s to y and missing z. Choose k large enough so that $N_{1/k}(z) \cap H = \emptyset$. Then $H \subseteq C(z, k)$. Also choose p large enough so that $N_{1/p}(x_p) \subseteq N_{1/k}(z)$. Then $C(z, k) \subseteq C(x_p, p)$ and hence $s \in C(x_p, p)$. This contradiction shows $\bigcap (M - C(x_n, i_n)) = \{z\}$. Thus $P_z \subseteq \{z\}$ and M is semi-locally-connected at z. □

Theorem 2.1. Let V be an open set in M. Suppose for all continua T containing y we have that $(P_T)^0 \cap (V - T) = \emptyset$, then $V \cap G$ is dense in V.

Proof. Suppose $W \subseteq V - G$ is an open point set of M. Let $x_1 \in W$. Choose $i_1 > 1$ such that $N_{1/i_1}(x_1) \subseteq W$ (with no loss of generality $y \notin W$).

If there is an $x \in N_{1/i_1}(x_1)$ such that, for some j, $C(x_1, i_1) \subseteq C(x, j)^0$ then
we let $x_2 = x$ and $i_2 = \max (j, 2, k)$ where k is such that

$$\overline{N}_{i_k}(x) \subseteq N_{1/i_k}(x).$$

Suppose for each positive integer n there exists a point x_n and an integer $i_n \geq n$ such that

$$C(x_n, i_n) \subseteq C(x_{n+1}, i_{n+1})^0 \quad \text{and} \quad \overline{N}_{1/i_{n+1}}(x_{n+1}) \subseteq N_{1/i_n}(x_n).$$

Let $z \in \bigcap N_{1/i_n}(x_n)$. Then x_1, x_2, x_3, \ldots converges to z. Since $z \in N_{1/i_{n+1}}(x_{n+1})$, for each positive integer n there is a j_n such that $N_{1/j_n}(z) \subseteq N_{1/i_{n+1}}(x_{n+1})$. Hence we conclude that $C(x_n, i_n) \subseteq C(x_{n+1}, i_{n+1})^0 \subseteq C(z, j_n)^0$. Since $d(x_n, z) < 1/n$ it follows that $z \in G_n$ for all n. But this says $z \in G \cap W$. We conclude that there must be an n such that $x \in N_{1/i_n}(x_n)$ implies $C(x_n, i_n) \nsubseteq C(x, j)^0$ for all j. Let $T = C(x_n, i_n)$. T is a subcontinuum of M containing y. Let $s \in N_{1/i_n}(x_n)$ and $T \subseteq H^0$ where H is a subcontinuum of M. If $s \notin H$, then there is a j such that $N_{1/j}(s) \subseteq M - H$. Hence $H \subseteq C(s, j)$. This says $C(x_n, i_n) = T \subseteq H^0 \subseteq C(s, j)^0$ which is a contradiction. Therefore $N_{1/i_n}(x_n) \subseteq P_T \cap (V - T)$, contradicting the fact that

$$(P_T)^0 \cap (V - T) = \emptyset. \quad \square$$

Corollary 2.1. If M is not semi-locally-connected at any point of a dense G_δ subset of an open point set V, and if for any subcontinuum T of M containing y we have $(P_T)^0 \cap (V - T) = \emptyset$. Then V contains a dense G_δ set of cut points.

Corollary 2.2 (Grace [2]). Suppose V is an open set of M which contains a dense G_δ set G such that given any point x in G, M is locally peripherally aposyndetic at x and M is not semi-locally-connected at x. Then V contains a dense G_δ set of cut points.

$(M$ is locally peripherally aposyndetic at x when for $x \in U$, U open, there is an open set W such that $x \in W \subseteq U$ and M is aposyndetic at x with respect to each point of ∂W.)

Proof. If V does not contain a dense G_δ set of cut points, then by Corollary 2.1 there is a continuum T such that $(P_T)^0 \cap (V - T) \neq \emptyset$. Let $x \in (P_T)^0 \cap (V - T)$ be a point at which M is both locally peripherally aposyndetic and semi-locally-connected. Since M is not semi-locally-connected at x, there is an open set W such that $x \in W \subseteq (P_T)^0 \cap (V - T)$ and $P_x \cap (M - W) \neq \emptyset$. Let U be open such that $x \in U \subseteq W$ and M is aposyndetic at x with respect to each point of ∂U. Since P_x is a continuum there is a $z \in P_x \cap \partial U$. By Lemma 1.2, $x \in P_z$. But this says M is not aposyndetic at x with respect to z and since $z \in \partial U$ we have a contradiction. \(\square\)
Jones [4, Theorem 15] has shown that a compact metric continuum M which is not semi-locally-connected at any of its points contains a dense set of cut points. Grace [1] posed the question whether a space M has a $G_δ$ set of cut points. In particular, this would imply that the cardinality of the collection of cut points is c. Hagopian [3, Theorem 4] has shown that the latter must happen: If a compact metric continuum M is not semi-locally-connected at any point of a $G_δ$ subset which is dense in M then the set of cut points in each open point set has cardinality c.

Suppose V is open in M and M is not semi-locally-connected at any point of a dense $G_δ$ subset K of V. Let $V = V \cap (\bigcup \{P_2^g - T \mid T \text{ is a subcontinuum of } M\})$ and let $V_2 = (V - V_1)^0$. By Corollary 2.1, V_2 contains a dense $G_δ$ set of cut points. Although we cannot show that V_1 contains a dense $G_δ$ set of cut points (which would answer Grace’s question), we can strengthen Hagopian’s result by proving that when $V_1 \neq \emptyset$, V_1 contains a nondegenerate continuum whose points are cut points. Assume $V_1 \neq \emptyset$.

Theorem 2.2. V_1 contains a dense $G_δ$ set J such that for each $x \in J$ there is a nondegenerate subcontinuum H of M containing x such that each point of H cuts x from y.

Proof. As a special case of Grace’s Theorem 2 [2] we have M contains a dense $G_δ$ set I such that if $x \in I \cap P_2$ then z cuts x from y. Let $J = V_1 \cap I$. For $x \in J$ there is a subcontinuum T of M such that $x \in P_2^g - T$. Let H be any nondegenerate subcontinuum of P_2 in P_2^g containing x. By Lemma 1.2, $z \in H$ implies $x \in P_2^g$. Since $x \in I$, z cuts x from y.

By choosing a nondegenerate subcontinuum K of H (the H of Theorem 2.2) which is contained in $V - \{x, y\}$, we have that each point of K is a cut point.

References

Department of Mathematics, University of Illinois, Urbana, Illinois 61801

Current address: Bethune-Cookman College, Daytona Beach, Florida 32015