Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Finite automorphic algebras over $ {\rm GF}(2)$


Author: Fletcher Gross
Journal: Proc. Amer. Math. Soc. 31 (1972), 10-14
DOI: https://doi.org/10.1090/S0002-9939-1972-0286856-7
MathSciNet review: 0286856
Full-text PDF

Abstract | References | Additional Information

Abstract: If $ A$ is a finite nonassociative algebra over $ {\text{GF}}(2)$ and $ G$ is a group of automorphisms of $ A$ such that $ G$ transitively permutes the nonzero elements of $ A$, then it is shown that either $ {A^2} = 0$ or the nonzero elements of $ A$ form a quasi-group under multiplication. Under the additional hypothesis that $ G$ is solvable, the algebra $ A$ is completely determined.


References [Enhancements On Off] (What's this?)

  • [1] W. Feit and J. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029. MR 29 #3538. MR 0166261 (29:3538)
  • [2] A. I. Kostrikin, On homogeneous algebras, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 471-484; English transl., Amer. Math. Soc. Transl. (2) 66 (1968), 130-144. MR 31 #219. MR 0175943 (31:219)
  • [3] D. Passman, Permutation groups, Benjamin, New York, 1968. MR 38 #5908. MR 0237627 (38:5908)
  • [4] D. Shaw, The Sylow $ 2$-subgroups of finite, soluble groups with a single class of involutions, J. Algebra 16 (1970), 14-26. MR 0268280 (42:3179)
  • [5] E. E. Shult, On finite automorphic algebras, Illinois J. Math. 13 (1969), 625-653. MR 40 #1441. MR 0248187 (40:1441)
  • [6] -, On the triviality of finite automorphic algebras, Illinois J. Math. 13 (1969), 654-659. MR 40 #1442. MR 0248188 (40:1442)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0286856-7
Keywords: Finite automorphic algebra
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society