Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A strong homotopy axiom for Alexander cohomology


Author: Kermit Sigmon
Journal: Proc. Amer. Math. Soc. 31 (1972), 271-275
DOI: https://doi.org/10.1090/S0002-9939-1972-0287533-9
MathSciNet review: 0287533
Full-text PDF

Abstract | References | Additional Information

Abstract: It is shown that the following form of the homotopy axiom holds for Alexander-Čech cohomology. Suppose that $ X$ and $ Y$ are any spaces, that $ T$ is a compact, connected space, and that $ G$ is an abelian group which either admits the structure of a compact topological group or is the additive group of a finite-dimensional vector space. Then for any continuous function $ F:X \times T \to Y$, one has $ F_r^\ast = F_s^\ast:{H^\ast}(Y;G) \to {H^\ast}(X;G)$ for all $ r,s \in T$, where $ {F_t}:X \to Y$ is defined by $ {F_t}(x) = F(x,t)$.


References [Enhancements On Off] (What's this?)

  • [1] C. H. Dowker, Čech cohomology theory and the axioms, Ann. of Math. (2) 51 (1950), 278-292. MR 11, 450. MR 0033517 (11:450f)
  • [2] -, Homology groups of relations, Ann. of Math. (2) 56 (1952), 84-95. MR 13, 967. MR 0048030 (13:967d)
  • [3] S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton Univ. Press, Princeton, N.J., 1952. MR 14, 398. MR 0050886 (14:398b)
  • [4] E. H. Spanier, Cohomology theory for general spaces, Ann. of Math. (2) 49 (1948), 407-427. MR 9, 523. MR 0024621 (9:523d)
  • [5] -, Algebraic topology, McGraw-Hill, New York, 1966. MR 35 #1007. MR 0210112 (35:1007)
  • [6] P. L. Sperry, The homotopy axiom for Alexander theory, J. London Math. Soc. 41 (1966), 97-100. MR 32 #3044. MR 0185580 (32:3044)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0287533-9
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society