Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A remark on a stability theorem of M. Marachkoff


Author: John R. Haddock
Journal: Proc. Amer. Math. Soc. 31 (1972), 209-212
DOI: https://doi.org/10.1090/S0002-9939-1972-0288370-1
MathSciNet review: 0288370
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: By placing certain conditions on $ f(t,x)$ for the system of ordinary differential equations (1)

$\displaystyle x' = f(t,x),\;f(t,0) \equiv 0,$

Marachkoff weakened the conditions on the Liapunov function of the classical asymptotic stability theorem of Liapunov theory and obtained asymptotic stability of the zero solution of (1). Later, Massera gave a shorter proof of Marachkoff's result. In this note we show that Marachkoff's theorem can be proven without the use of one of the conditions.

References [Enhancements On Off] (What's this?)

  • [1] H. A. Antosiewicz, A survey of Liapunov's second method, Contributions to the Theory of Nonlinear Oscillations, vol. 4, Ann. of Math. Studies, no. 41, Princeton Univ. Press, Princeton, N.J., 1958, pp. 141-166. MR 21 #1432. MR 0102643 (21:1432)
  • [2] Fred Brauer, Some refinements of Liapunov's second method, Canad. J. Math. 17 (1965), 811-819. MR 31 #3670. MR 0179422 (31:3670)
  • [3] E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955. MR 16, 1022. MR 0069338 (16:1022b)
  • [4] W. Hahn, Theory and application of Liapunov's direct method, Prentice-Hall, Englewood Cliffs, N.J., 1963. MR 26 #5230. MR 0147716 (26:5230)
  • [5] Maratschkow (V. Maračkov), Über einem Liapounoffschen Satz, Bull. Soc. Phys.Mat. Kazan. (3) 12 (1940), 171-174. MR 7, 158. MR 0013478 (7:158i)
  • [6] J. L. Massera, On Liapunoff's conditions of stability, Ann. of Math. (2) 50 (1949), 705-721. MR 11, 721. MR 0035354 (11:721f)
  • [7] T. Yoshizawa, Stability theory by Liapunov's second method, Math. Soc. Japan, no. 9, Math. Soc. Japan. Tokyo, 1966. MR 34 #7896. MR 0208086 (34:7896)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0288370-1
Keywords: Zero solution, stability, asymptotic stability, Liapunov function, positive definite, negative definite, decrescent, total derivative
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society