Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Continuity and linearity of centralizers on a complemented algebra.


Authors: Parfeny P. Saworotnow and George R. Giellis
Journal: Proc. Amer. Math. Soc. 31 (1972), 142-146
DOI: https://doi.org/10.1090/S0002-9939-1972-0288585-2
MathSciNet review: 0288585
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: Let $ A$ be a semisimple complemented algebra and let $ T$ be a mapping of $ A$ into itself such that either $ T(xy) = xTy$ or $ T(xy) = (Tx)y$ holds for all $ x,y \in A$. If $ T$ is defined everywhere on $ A$ then $ T$ is a bounded linear operator.


References [Enhancements On Off] (What's this?)

  • [1] W. Ambrose. Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364-386. MR 7, 126. MR 0013235 (7:126c)
  • [2] N. Jacobson. The radical and semi-simplicity for arbitrary rings, Amer. J. Math. 67 (1945), 300-320. MR 7, 2. MR 0012271 (7:2f)
  • [3] B. E. Johnson, An introduction to the theory of centralizers, Proc. London Math. Soc. (3) 14 (1964), 299-320. MR 28 #2450. MR 0159233 (28:2450)
  • [4] -, Continuity of centralizers on Banach algebras, J. London Math. Soc. 41 (1966), 639-640. MR 34 #629. MR 0200741 (34:629)
  • [5] C. N. Kellogg, Centralizers and $ {H^\ast}$-algebras, Pacific J. Math. 17 (1966), 121-129. MR 33 #1749. MR 0193529 (33:1749)
  • [6] P. P. Saworotnow, On a generalization of the notion of $ {H^\ast}$-algebra, Proc. Amer. Math. Soc. 8 (1957), 49-55. MR 19, 47. MR 0085480 (19:47a)
  • [7] -, On the imbedding of a right complemented algebra into Ambrose's $ {H^\ast}$-algebra, Proc. Amer. Math. Soc. 8 (1957), 56-62. MR 19, 47. MR 0085481 (19:47b)
  • [8] M. F. Smiley, Right $ {H^\ast}$-algebras, Proc. Amer. Math. Soc. 4 (1953), 1-4. MR 14, 660. MR 0052699 (14:660d)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0288585-2
Keywords: Centralizer, right centralizer, left centralizer, complemented algebra, $ {H^\ast}$-algebra, right $ {H^\ast}$-algebra, left $ {H^\ast}$-algebra, left projection, primitive left projection
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society