Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Invariant means on locally compact semigroups


Author: James C. S. Wong
Journal: Proc. Amer. Math. Soc. 31 (1972), 39-45
DOI: https://doi.org/10.1090/S0002-9939-1972-0289708-1
MathSciNet review: 0289708
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: Let $ G$ be a locally compact semigroup (jointly continuous semigroup operation), $ M(G)$ the algebra of all bounded regular Borel measures on $ G$ (with convolution as multiplication), $ E$ a separated locally convex space and $ S$ a compact convex subset of $ E$. We show that there is a left invariant mean on the space $ {\text{LUC}}(G)$ of all bounded left uniformly continuous functions on $ G$ iff $ G$ has the following fixed point property: For any bilinear mapping $ T:M(G) \times E \to E$ (denoted by $ (\mu ,s) \to {T_\mu }(s)$) such that (a) $ {T_\mu }(S) \subset S$ for any $ \mu \geqq 0,\vert\vert\mu \vert\vert = 1$, (b) $ {T_{\mu \ast\nu }} = {T_\mu } \circ {T_\nu }$ for any $ \mu ,\nu \in M(G)$, (c) $ {T_\mu }:S \to S$ is continuous for any $ \mu \geqq 0,\vert\vert\mu \vert\vert = 1$, and $ {\text{(d)}}\mu \to {T_\mu }(s)$ is continuous for each $ s \in S$ when $ M(G)$ has the topology induced by the seminorms $ {p_f}(\mu ) = \vert\int {fd\mu \vert} ,f \in {\text{LUC}}(G)$, there is some $ {s_0} \in S$ such that $ {T_\mu }({s_0}) = {s_0}$ for any $ \mu \geqq 0,\vert\vert\mu \vert\vert = 1$.


References [Enhancements On Off] (What's this?)

  • [1] M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544. MR 19, 1067. MR 0092128 (19:1067c)
  • [2] -, Fixed-point theorems for compact convex sets, Illinois J. Math. 5 (1961), 585-590. MR 25 #1547. MR 0138100 (25:1547)
  • [3] -, Correction to my paper, ``Fixed-point theorems for compact convex sets," Illinois J. Math. 8 (1964), 713. MR 29 #6463. MR 0169210 (29:6463)
  • [4] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., Vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [5] R. Ellis, Locally compact transformation groups, Duke Math. J. 24 (1957), 119-125. MR 19, 561. MR 0088674 (19:561b)
  • [6] I. Glicksberg, Weak compactness and separate continuity, Pacific J. Math. 11 (1961), 205-214. MR 22 #11275. MR 0120523 (22:11275)
  • [7] K. de Leeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), 63-97. MR 24 #A1632. MR 0131784 (24:A1632)
  • [8] F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Math Studies, no. 16, Van Nostrand, Princeton, N.J., 1969. MR 40 #4776. MR 0251549 (40:4776)
  • [9] E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. 1: Structure of topological groups. Integration theory, group representations, Die Grundlehren der math. Wissenschaften, Band 115, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #158. MR 551496 (81k:43001)
  • [10] J. Kelley, General topology, Van Nostrand, Princeton, N.J., 1955. MR 16, 1136. MR 0070144 (16:1136c)
  • [11] T. Mitchell, Topological semigroups and fixed points, Illinois J. Math. 14 (1970), 630-641. MR 0270356 (42:5245)
  • [12] I. Namioka, On certain actions of semigroups on $ L$-spaces, Studia Math. 29 (1967), 63-77. MR 36 #6910. MR 0223863 (36:6910)
  • [13] N. Rickert, Amenable groups and groups with the fixed point property, Trans. Amer. Math. Soc. 127 (1967), 211-232. MR 36 #5260. MR 0222208 (36:5260)
  • [14] A. P. Robertson and W. J. Robertson, Topological vector spaces, Cambridge Univ. Press, New York, 1964. MR 28 #5318. MR 0162118 (28:5318)
  • [15] W. G. Rosen, On invariant means over compact semigroups, Proc. Amer. Math. Soc. 7 (1956), 1076-1082. MR 18, 495. MR 0082080 (18:495b)
  • [16] James C. S. Wong, Topologically stationary locally compact groups and amenability, Trans. Amer. Math. Soc. 144 (1969), 351-363. MR 40 #2781. MR 0249536 (40:2781)
  • [17] -, Topological invariant means on locally compact groups and fixed points, Proc. Amer. Math. Soc. 27 (1971), 572-578. MR 0272954 (42:7835)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0289708-1
Keywords: Locally compact semigroups, fixed point properties, invariant means, convolution algebras, left uniformly continuous functions
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society