Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Equivalence-singularity dichotomies from zero-one laws


Authors: Raoul D. LePage and V. Mandrekar
Journal: Proc. Amer. Math. Soc. 31 (1972), 251-254
DOI: https://doi.org/10.1090/S0002-9939-1972-0290442-2
MathSciNet review: 0290442
Full-text PDF

Abstract | References | Additional Information

Abstract: In this note a general result on equivalence and singularity of two measures is presented. As a consequence of this S. Kakutani's dichotomy for product measures and J. Feldman's dichotomy for Gaussian measures are derived via appropriate zero-one laws.


References [Enhancements On Off] (What's this?)

  • [1] J. Feldman, Equivalence and perpendicularity of Gaussian processes, Pacific J. Math. 8 (1958), 699-708. MR 21 #1546. MR 0102760 (21:1546)
  • [2] S. Kakutani, On equivalence of infinite product measures, Ann. of Math. (2) 49 (1948), 214-224. MR 9, 340. MR 0023331 (9:340e)
  • [3] G. Kallianpur, Zero-one laws for Gaussian processes, Trans. Amer. Math. Soc. 149 (1970), 199-211. MR 0266293 (42:1200)
  • [4] Charles Kraft, Some conditions for consistency and uniform consistency of statistical procedures, Univ. Calif. Publ. Statist. 2 (1955), 125-141. MR 17, 505. MR 0073896 (17:505a)
  • [5] M. Loève, Probability theory, 3rd ed., Van Nostrand, Princeton, N.J., 1963. MR 34 #3596. MR 0203748 (34:3596)
  • [6] J. Neveu, Bases mathématiques du calcul des probabilités, Masson, Paris, 1964; English transl., Holden-Day, San Francisco, Calif., 1965. MR 33 #6659; #6660. MR 0198504 (33:6659)
  • [7] E. Parzen, Probability density functionals and reproducing kernel Hilbert spaces, Proc. Sympos. Time Series Analysis (Brown University, 1962), Wiley, New York, 1963, pp. 155-169. MR 26 #7119. MR 0149634 (26:7119)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0290442-2
Keywords: Singularity, equivalence, product measure, Gaussian measure, zero-one law
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society