ON A TAUBERIAN THEOREM OF WIENER AND PITT

HAROLD G. DIAMOND

Abstract. N. Wiener and H. R. Pitt established a tauberian theorem which is "intermediate" between that of Wiener and Ikehara on one hand and a theorem of Hardy and Littlewood on the other. A new proof of the Wiener-Pitt theorem is given, using a technique of Bochner.

N. Wiener and H. R. Pitt established in [6] a tauberian theorem which is "intermediate" between that of Wiener and Ikehara on one hand and a theorem of Hardy and Littlewood on the other. Let \(\alpha \in (0, 1) \) and \(B > 0 \). Let \(C = C(\alpha, B) \) be the curve in the complex plane given by

\[
\{ \sigma + it : |t| = B\sigma^\alpha, 0 \leq \sigma < \infty \}.
\]

From a one sided boundedness condition on a function plus an \(L_1 \) hypothesis upon its Laplace transform along the curve \(C \), it is proved that the function has a small integral over certain intervals. A result of this type had been conjectured by J. Karamata and a special case (\(\alpha = \frac{1}{2} \)) was given by V. G. Avakumović [1].

The proof of Wiener and Pitt was quite intricate. Another version appears in Pitt's book [3, pp. 135-138], but that proof is valid if and only if \(\alpha \geq \frac{1}{2} \). This is so because Pitt assumes that

\[
F(u) := \int_{-\infty}^{\infty} e^{itu} \exp (-|t|^{1/\alpha}) \, dt > 0,
\]

and this inequality is valid for all real \(u \) precisely when \(\alpha \geq \frac{1}{2} \) (cf. [2] and [4]). The object of the present paper is to give a shorter proof of the theorem. We shall use a Bochner type argument, integrating along line segments \(\sigma + it, -\lambda \leq t \leq \lambda \), where we take \(\sigma = L/x, \lambda = B'\sigma^\alpha = \frac{1}{2}B'L^x x^{-\alpha} \). The number \(L \) will be chosen later and will be independent of \(x \), and \(B' = \min (B, 1) \). We formulate the theorem substantially as in [3].

Received by the editors November 16, 1970.

AMS 1970 subject classifications. Primary 40E05.

Key words and phrases. Tauberian theorem, Laplace transform, Wiener-Ikehara theorem.

1 Research supported by grant NSF GP 12363.

© American Mathematical Society 1972

152
Theorem. Let \(s \) be a real measurable function that is supported in \((0, \infty)\), bounded from below, and satisfies \(\int_0^\infty |s(y)| e^{-\sigma y} \, dy < \infty \) for all positive \(\sigma \). For \(\text{Re} \omega > 0 \), define

\[
S(\omega) = \int_0^\infty e^{-\omega y} s(y) \, dy
\]

and assume that

\[
\lim_{\epsilon \to 0^+} \int |S(\omega + \epsilon) - S(\omega)| \, |d\omega| = 0,
\]

where the integration is taken over any bounded arc of \(\mathbb{C} \). Then for any \(A > 0 \),

\[
\lim_{x \to 0^+} \int_{x}^{x+Ax^2} |S(\omega + \epsilon) - S(\omega)| \, |d\omega| = 0.
\]

Since \(s \) has no support near zero, \(S(\omega) \) vanishes exponentially as \(\text{Re} \omega \to \infty \). This fact plus the \(L_1 \) limit hypothesis guarantee both the absolute integrability of \(S \) along all of \(\mathbb{C} \) and the validity of Cauchy’s formula. Thus, for \(|t| \leq \lambda \) we can write

\[
S(\sigma + it) = \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{S(z)}{z - \sigma - it} \, dz.
\]

If we set

\[
h_\lambda(y) = \lambda \left(\sin \frac{\lambda y/2}{\lambda y/2} \right),
\]

we have the following familiar Parseval formula (cf. [5, p. 84])

\[
(*) \quad \int_{-\lambda}^{\lambda} (1 - \frac{|t|}{\lambda}) e^{it\sigma} S(\sigma + it) \, dt = \int_0^\infty h_\lambda(x - y) e^{-\sigma y} s(y) \, dy.
\]

Let \(\varphi(x) \) denote the left-hand side of \((*)\) (recalling that \(\sigma \) and \(\lambda \) are functions of \(x \)). We begin by establishing a type of Riemann-Lebesgue lemma.

Lemma 1.

\[
\lim_{x \to \infty} \varphi(x) = 0.
\]

Proof. Expressing \(S(\sigma + it) \) by the Cauchy formula and inverting the integration order, we have

\[
\varphi(x) = \frac{1}{2\pi i} \int_{\mathbb{C}} S(z) \left[\int_{-\lambda}^{\lambda} \frac{(1 - \frac{|t|}{\lambda})}{z - \sigma - it} e^{it\sigma} \, dt \right] \, dz.
\]

Let \(f_{-\lambda}^\lambda \) denote the inner integral, and integrate it by parts.

\[
\left| f_{-\lambda}^\lambda \right| = \left| \int_{-\lambda}^{\lambda} \frac{e^{it\sigma}}{ix} \left(\frac{(1 - \frac{|t|}{\lambda})}{z - \sigma - it} - \frac{\text{sgn} \, t}{\lambda(z - \sigma - it)} \right) \, dt \right|.
\]

\[
\leq \frac{1}{x} \int_{-\lambda}^{\lambda} \frac{dt}{|z - \sigma - it|^2} + \frac{1}{\lambda x} \int_{-\lambda}^{\lambda} \frac{dt}{|z - \sigma - it|}.
\]
Write $z = u + iv$. If $|v| \geq \frac{3}{8}B'\sigma^a$, then
\[|z - \sigma - it| \geq |\text{Im}(z - \sigma - it)| \geq B'\sigma^a/4\]
and $\int_{-1}^{1} = o(1)$ as $x \to \infty$. If $|v| < \frac{3}{8}B'\sigma^a$, then $0 \leq u < (3B'/4)^{1/2}\sigma$ and
\[|z - \sigma - it|^2 = (u - \sigma)^2 + (v - i)^2 \geq \sigma^2 + (v - t)^2,
\]
where $\sigma^2 = 1 - \frac{(3\beta'/4)^{1/2}}{4} > 0$. Thus, in this case
\[
\left| \int_{-1}^{1} \frac{1}{x} \int_{-\infty}^{\infty} \frac{dt}{c^2\sigma^2 + t^2} + \frac{2\lambda}{\lambda x} \right| = O(1).
\]
Now express \int_{C} as the integral over $C_1 = \{z \in C : |\text{Im}z| < \frac{3}{8}B'\sigma^a\}$ plus the integral over $C_2 = C - C_1$ and note that $\int_{C_1} |S(z)| |dz| \to 0$ as $1/x$ (and hence σ) tends to 0, while the same integral over C_2 is uniformly bounded. Thus $\varphi(x) \to 0$ as $x \to \infty$.

The next lemma shows s to be bounded "on the average." It is essential for the estimation of I_2 and I_4 at the conclusion of the article that the number β may be arbitrarily small and that the number c_1 not depend on β.

Lemma 2. There is a number c_1, which depends only on s, and for any number $\beta > 0$ there is a number X_β, which increases with $1/\beta$, such that, for all $x \geq X_\beta$,
\[
(2\beta x^a)^{-1} \int_{x-\beta x^a}^{x+\beta x^a} |s(y)| \, dy \leq c_1.
\]

Proof. By the hypothesis of the theorem, $s(y) \geq -k$ for some k and hence $|s(y)| \leq s(y) + 2k$. We set $L = (2/B'\beta)^{1/2}$ (just for the proof of this lemma) and have $\sigma = L/x$, $\lambda = \frac{1}{2}B'\sigma^a = (\beta x^a)^{-1}$. Then
\[
2\left(\frac{\sin \frac{1}{2}}{\frac{1}{2}}\right)^2 \exp \{-\sigma x - \sigma/\lambda\} \frac{\lambda}{2} \int_{x-1/\lambda}^{x+1/\lambda} |s(y)| \, dy
\leq \int_{0}^{\infty} h_\lambda(x - y)e^{-\sigma y}s(y) + 2k \, dy = \varphi(x) + 2k \int_{0}^{\infty} h_\lambda(x - y)e^{-\sigma y} \, dy
\leq |\varphi(x)| + 2k \exp \{-\sigma x + \lambda e^L/\lambda\} \int_{|y - x| < e^{L/\lambda}} h_\lambda(x - y) \, dy
+ 2k \int_{|y - x| \geq e^{L/\lambda}} h_\lambda(x - y) \, dy
\leq |\varphi(x)| + 2k \exp \{-L + \beta Le^L x^{a-1}\} + 16ke^{-L} < 20ke^{-L}
\]
provided that x is large enough so that $|\varphi(x)| \leq ke^{-L}$, $\exp \{\beta Le^L x^{a-1}\} \leq \frac{3}{8}$. Thus
\[
\frac{\lambda}{2} \int_{x-1/\lambda}^{x+1/\lambda} |s(y)| \, dy \leq \frac{20k}{8(\sin \frac{1}{2})^2} \exp \{\beta L x^{a-1}\}
\leq 12k =: c_1
\]
provided \(x \) is large enough so that \(\exp \{ \beta Lx^{x-1} \} \leq \frac{2}{\beta}(\sin \frac{1}{2})^2 \).

Since \(\beta L \) and \(e^L \to \infty \) with \(1/\beta \) and \(\varphi \) is continuous and tending to zero, we can take \(X_\beta \) to be the infimum of all \(x \) for which each of the three inequalities is valid. \(\square \)

Corollary 1. There exists a number \(c_2 \), which depends only on \(s \), such that, for all \(x \geq 0 \), \(\int_0^x |s(y)| \, dy \leq c_2 x \).

Proof. The hypotheses of the theorem imply that \(|s| \) is locally integrable and that \(s \) is zero near the origin. Now \(x^{-1} \int_0^x |s(y)| \, dy \) is a continuous function on \((0, \infty)\) which is bounded at 0 and at \(\infty \), and thus is bounded on \((0, \infty)\). \(\square \)

Corollary 2. Let \(\beta > 0 \) and suppose that \(w \geq X_\beta \), where \(X_\beta \) is as in the lemma. Suppose that \(f \) is a positive monotone function on \([w, z]\) and \(\frac{1}{\beta} \leq f(x)f(x + \beta x^s) \leq 2 \) for all \(x \in [w, z] \). If \(z \geq w + \beta w^s \), then

\[
\int_w^z f(u) |s(u)| \, du \leq 4c_1 \int_w^z f(u) \, du.
\]

Proof. We may assume without loss of generality that \(f \) is increasing. If \(z < (w + \beta w^s) + \beta(w + \beta w^s)^s \), then

\[
\int_w^z f(u) |s(u)| \, du \leq f(z) \int_w^z |s(u)| \, du \leq 4f(w)c_1(z - w)
\]

\[
\leq 4c_1 \int_w^z f(u) \, du.
\]

In the other case define a sequence \(\{x_n\}_{n=0}^{N+1} \) by taking \(x_0 = w \), \(x_n = x_{n-1} + \beta x_{n-1}^s \), \(n = 1, 2, \cdots \), and taking \(x_{N+1} \) to be the largest number of the sequence not exceeding \(z \). Apply the above inequalities to each of the intervals \([w, x_1], [x_1, x_2], \cdots, [x_N, z]\). \(\square \)

It is now convenient to approximate the right-hand side of (*) by a convolution. We show

Lemma 3.

\[
\lim_{z \to \infty} \int_0^\infty h_\lambda(x - y)s(y) \, dy = 0.
\]

Proof. Let \(\epsilon > 0 \) be given. Write

\[
(h_\lambda \ast s)(x) = \int_0^\infty h_\lambda(x - y)s(y) \, dy = I + II,
\]

where

\[
I = e^L \int_0^\infty h_\lambda(x - y)e^{-\sigma y}s(y) \, dy = e^L \varphi(x) = o(1)
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
as $x \to \infty$ and
$$II = \int_0^\infty h_\lambda(x-y)s(y)\{1 - e^{L-\sigma y}\} \, dy.$$ Write
$$II = \int_0^{x/2} + \int_{x/2}^{x-vx^2} + \int_{x+vx^2}^{\infty}$$
where v is a large positive number to be specified presently. By Corollary 1,
$$\left|\int_0^{x/2}\right| \leq e^L \frac{4}{\lambda (x/2)^2} \cdot c_\lambda \frac{x}{2} = \frac{16e^Lc_\lambda}{B'L^2x^{1-\sigma}} = o(1).$$
We can estimate the second and fourth integrals using Corollary 2. We first replace $h_\lambda(x-y)$ by $4/\lambda(x-y)^2 = H(y)$, and note that H satisfies the monotonicity and slow growth conditions of the corollary on each of the two ranges. Thus
$$\left|\int_{x/2}^{x-vx^2}\right| + \left|\int_x^{\infty}\right| \leq 2 \cdot 4c_\lambda e^L \frac{4}{\lambda vx^2} < 2\epsilon/5$$
provided that x is sufficiently large and $v > 160c_\lambda e^L/B'L^2\epsilon$. With this choice of v, we estimate the third integral. If $x - vx^2 \leq y \leq x + vx^2$ and x is sufficiently large, then
$$|e^{L-\sigma y} - 1| \leq 2 |L - \sigma y| \leq 2Lvx^{a-1}.$$ Thus, by Lemma 2, we have
$$\left|\int_{x-vx^2}^{x+vx^2}\right| \leq 2Lvx^{a-1}\lambda \int_{x-vx^2}^{x+vx^2} |s(y)| \, dy = O(x^{a-1}\lambda x^a) = o(1).$$
Now if x is sufficiently large, depending on s, L, C and ϵ, we have $|(h_\lambda * s)(x)| < \epsilon$. □

Conclusion of the argument. Let χ_E be the indicator function of the set E. An easy estimate shows that for any positive number M we have
$$h_\lambda * \chi_{[-M,M]}(u) = 1 + O(\lambda^{-1}(M - |u|)^{-1}), \quad |u| < M,$$
$$= O(1), \quad \text{always},$$
$$= O(M\lambda^{-1}(|u| - M)^{-2}), \quad |u| > M.$$ Here the constants implied by the O's are absolute. The preceding lemma implies that $((1/2M)\chi_{[-M,M]} * h_\lambda * s)(x) \to 0$ as $x \to \infty$, where M may tend to ∞ with x, so long as $x \geq M$, say. We take $M = (A + \eta)x^2$, where $\eta = \ldots$.
where η is a positive number, presently to be specified, and write

\[
(x_{[-M,M]} * h_{\lambda} * s)(x) = \int_{-\infty}^{\infty} s(x - y)(x_{[-M,M]} * h_{\lambda})(y) \, dy
\]

\[
= \int_{-\infty}^{-(A+2\eta)x^2} + \int_{-A x^2}^{A x^2} + \int_{A x^2}^{(A+2\eta)x^2} + \int_{(A+2\eta)x^2}^{\infty}
\]

\[
\int_{-\infty}^{-(A+2\eta)x^2} + \int_{(A+2\eta)x^2}^{\infty}
\]

\[
\int_{-A x^2}^{A x^2} + \int_{A x^2}^{(A+2\eta)x^2} + \int_{(A+2\eta)x^2}^{\infty}
\]

\[
= \sum_{j=1}^{6} I_j,
\]

say.

Now

\[
I_3 = \int_{x - A x^2}^{x + A x^2} s(y) \, dy + O\left(\frac{c_1 A x^2}{\lambda x^2}\right).
\]

\[
I_2 + I_4 = O(c_1 \eta x^3), \quad I_1 + I_5 = O(c_1 M / \lambda x^3), \quad \text{by Corollary 2, and}
\]

\[
I_6 = O(M c_2 / \lambda x).
\]

The four O's are absolute and the estimates are valid for all sufficiently large x. Thus we have

\[
\left| \frac{1}{2 A x^2} \int_{x - A x^2}^{x + A x^2} s(y) \, dy \right| \leq c_3 \left(\frac{c_1}{\eta B'L^*} + \frac{c_1 \eta}{A} + \frac{c_1 (A + \eta)}{A B'L^* \eta} + \frac{c_2 (A + \eta) x^{x-1}}{A B'L^*} + o(1) \right),
\]

where c_3 is absolute.

Given ϵ in $(0, 1)$, take η so small that $c_3 c_1 / A < \epsilon / 5$. Next, take L sufficiently large that

\[
(A + \eta) c_1 c_3 / (A B'L^* \eta) < \epsilon / 5.
\]

Then take x so large that all the preceding inequalities are valid and

\[
c_3 c_2 (A + \eta) x^{x-1} / (A B'L^*) + c_2 o(1) < 2 \epsilon / 5.
\]

We conclude then that

\[
\left| \frac{1}{2 A x^2} \int_{x - A x^2}^{x + A x^2} s(y) \, dy \right| < \epsilon
\]

for all sufficiently large x, and the proof of the theorem is complete. □

Possibly the L_1 limit in the hypothesis of the theorem can be relaxed to the L_1 bound $\int_C |S(\omega)| \, d\omega < \infty$. One would then have to show (if possible) that the singularity of S at zero, when approached from "within" C, was sufficiently weak to permit the application of Cauchy's theorem.
REFERENCES

4. G. Pólya, On the zeros of an integral function represented by Fourier's integral, Messenger Math. 52 (1923), 185–188.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801