Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On a tauberian theorem of Wiener and Pitt

Author: Harold G. Diamond
Journal: Proc. Amer. Math. Soc. 31 (1972), 152-158
MSC: Primary 40E05
MathSciNet review: 0294944
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: N. Wiener and H. R. Pitt established a tauberian theorem which is ``intermediate'' between that of Wiener and Ikehara on one hand and a theorem of Hardy and Littlewood on the other. A new proof of the Wiener-Pitt theorem is given, using a technique of Bochner.

References [Enhancements On Off] (What's this?)

  • [1] V. G. Avakumović, Théorèmes relatifs aux intégrales de Laplace sur leur frontiêre de convergence, C. R. Acad. Sci. Paris 204 (1937), 224-226.
  • [2] P. Lévy, Sur une application de la dérivée d'ordre non entier au calcul des probabilités, C. R. Acad. Sci. Paris 176 (1923), 1118-1120.
  • [3] H. R. Pitt, Tauberian theorems, Tata Institute of Fundamental Research, Monographs on Mathematics and Physics, vol. 2, Oxford University Press, London, 1958. MR 0106376
  • [4] G. Pólya, On the zeros of an integral function represented by Fourier's integral, Messenger Math. 52 (1923), 185-188.
  • [5] E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Oxford Univ. Press, London, 1937.
  • [6] N. Wiener and H. R. Pitt, A generalization of Ikehara's theorem, J. Math. Phys. 17 (1939), 247-258.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 40E05

Retrieve articles in all journals with MSC: 40E05

Additional Information

Keywords: Tauberian theorem, Laplace transform, Wiener-Ikehara theorem
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society