Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Nakayama's lemma for half-exact functors


Authors: Arthur Ogus and George Bergman
Journal: Proc. Amer. Math. Soc. 31 (1972), 67-74
MSC: Primary 13D99
DOI: https://doi.org/10.1090/S0002-9939-1972-0302633-2
MathSciNet review: 0302633
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove an analog of Nakayama's Lemma, in which the finitely generated module is replaced by a half-exact functor from modules to modules. As applications, we obtain simple proofs of Grothendieck's ``property of exchange'' for a sheaf of modules under base change, and of the ``local criterion for flatness."


References [Enhancements On Off] (What's this?)

  • [1] Maurice Auslander, On the dimension of modules and algebras. III. Global dimension, Nagoya Math. J. 9 (1955), 67–77. MR 0074406
  • [2] Hyman Bass, Algebraic 𝐾-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
  • [3] N. Bourbaki, Algèbre commutative. Chap. 2, Actualités Sci. Indust., no. 1290, Hermann, Paris, 1961. MR 36 #146.
  • [4] -, Algèbre commutative. Chap. 3, Actualités Sci. Indust., no. 1293, Hermann, Paris, 1961. MR 30 #2027.
  • [5] P. M. Cohn, Universal algebra, Harper & Row, Publishers, New York-London, 1965. MR 0175948
  • [6] A. Grothendieck, Eléments de géométrie algébrique, Inst. Hautes Études Sci. Publ. Math. No. 11 (1961); ibid. No. 17 (1963). MR 29 #1210; MR 36 #177c.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13D99

Retrieve articles in all journals with MSC: 13D99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0302633-2
Keywords: Nakayama's Lemma, half-exact functor, additive category with $ R$-linear structure, base change, tensor product, cohomological $ \delta $-functor, property of exchange, flat module
Article copyright: © Copyright 1972 American Mathematical Society