Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Regular compactifications of convergence spaces


Authors: G. D. Richardson and D. C. Kent
Journal: Proc. Amer. Math. Soc. 31 (1972), 571-573
DOI: https://doi.org/10.1090/S0002-9939-1972-0286074-2
MathSciNet review: 0286074
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: This note gives a simple characterization for the class of convergence spaces for which regular compactifications exist and shows that each such convergence space has a largest regular compactification.


References [Enhancements On Off] (What's this?)

  • [1] D. C. Kent, Convergence quotient maps, Fund. Math. 65 (1969), 197-205. MR 40 #3497. MR 0250258 (40:3497)
  • [2] D. C. Kent and G. D. Richardson, Minimal convergence spaces, Trans. Amer. Math. Soc. 160 (1971), 487-499. MR 0286063 (44:3279)
  • [3] J. F. Ramaley and O. Wyler, Cauchy spaces. II, Math. Ann. 187 (1970), 187-199. MR 0266142 (42:1050b)
  • [4] G. D. Richardson, A Stone-Čech compactification for limit spaces, Proc. Amer. Math. Soc. 25 (1970), 403-404. MR 41 #992. MR 0256336 (41:992)
  • [5] O. Wyler, The Stone-Čech compactification for limit spaces, Notices Amer. Math. Soc. 15 (1968), 169. Abstract #653-306.


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0286074-2
Keywords: Regular convergence spaces, regular compactification of convergence spaces
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society