A PROPERTY OF ARITHMETIC SETS

HISAO TANAKA

Abstract. We shall show that every nonempty countable arithmetic subset of \(\mathbb{N}^\mathbb{N} \) contains at least one element \(a \) such that the singleton \(\{a\} \) itself is arithmetic. The proof is carried out by using a method in classical descriptive set theory.

It is known that (*) if no member of a nonempty \(\Sigma^1_1 \) set \(E \) is hyperarithmetic then \(E \) contains a perfect subset. (In this note, sets mean subsets of \(\mathbb{N}^\mathbb{N} \)—the set of all 1-place number-theoretic functions which we identify with Baire zero-space.) In fact, every \(\Sigma^1_1 \) set with a nonhyperarithmetic element contains a perfect subset. (See, e.g., Harrison [2, Theorem 2.12] and Mathias [4, T3200].) In what follows, we shall show that an arithmetic counterpart of the proposition (*) holds true:

Theorem 1. If no member of a nonempty arithmetic set \(A \) is an arithmetic singleton, then \(A \) contains a perfect subset.

It is evident that one can not replace "arithmetic singleton" by "arithmetic element" in our theorem.

T. G. McLaughlin has asked the following question (unpublished): Let \(A \) be a nonempty countable arithmetic set. Then, must some member of \(A \) be an arithmetic singleton? Now we can obtain an affirmative answer to this question as a direct corollary of our theorem, thus:

Corollary 2. If \(A \) is a nonempty countable arithmetic set, then \(A \) contains at least one arithmetic singleton.

Since every uncountable arithmetic set (in fact, every classical uncountable analytic set) contains a perfect subset, Corollary 2 is equivalent to Theorem 1. I do not know whether every member of a countable arithmetic set is an arithmetic singleton. This is also a problem presented by McLaughlin.

Proof of Theorem 1. We shall illustrate for the case that \(A \) is a \(\Pi^0_5 \) set. Proof is analogous for the other cases. Note that if \(A \) is a \(\Sigma^0_{n+1} \) set then we can reduce it to the case of \(\Pi^0_n \).

Received by the editors October 23, 1970.

AMS 1970 subject classifications. Primary 02F35, 02K30.

Key words and phrases. Arithmetic (i.e., \(\Pi^0_n \) or \(\Sigma^0_n \)) subset of \(\mathbb{N}^\mathbb{N} \), arithmetic singleton, dense-in-itself, perfect set.

© American Mathematical Society 1972

521
Now let \(A \) be a set defined by
\[
A = \{ x \in \mathbb{N}^* \mid (\forall x_0)(\exists y_0)(\forall x_1)(\exists y_1) R(x, x_0, x_1, y_0, y_1) \}
\]
where \(R \) is \(\Pi^0_1 \). Then we have
\[
\alpha \in A \iff (\exists \beta_0)(\exists \beta_1)(\forall x_0)(\forall x_1) R(x, x_0, x_1, \beta_0(x_0), \beta_1(x_0, x_1))
\]
\[
\iff (\exists \beta)(\forall x) R(x, (x)_0, (x)_1, \beta((x)_0), \beta((x)_0, (x)_1, 1)),
\]
where \(\langle a_0, a_1, \cdots, a_k \rangle = p_0^{a_0} \cdot p_1^{a_1} \cdots p_k^{a_k} \) and \(p_i \) is the \((i+1) \)-st prime number. (For notations used in this note, we mostly borrow from Kleene [3].) Let \(R' \) and \(R'' \) be predicates defined as follows:
\[
R'(x, s) \iff [\text{Seq}(s) \land \text{Lh}(s) = 0((\text{Lh}(s))_0, (\text{Lh}(s))_1, 2) \rightarrow R(x, (\text{Lh}(s))_0, (\text{Lh}(s))_1, \exp(s, ((\text{Lh}(s))_0, \exp(s, ((\text{Lh}(s))_0, 1), \exp(s, ((\text{Lh}(s))_0, (\text{Lh}(s))_1, 1)) - 1),
\]
where \(\exp(s, i) = (s)_i \). And
\[
R''(x, s) \iff (\forall i) \text{Seq}(s) R'(x, rstr(s, i)),
\]
where
\[
rstr(s, i) = \prod_{k < i} p_k^{s_k}, \quad \text{if Seq}(s) \land i \leq \text{Lh}(s),
\]
1, \quad \text{otherwise}.
\]
Then \(R'' \) has the following properties:
1. \(\alpha \in A \iff (\exists \beta)(\forall x) R''(x, \tilde{\beta}(x)) \),
2. \(R'' \) is \(\Pi^0_4 \) and hence for each sequence number \(s \), the set \(E_s = \{ x \mid R''(x, s) \} \) is a closed set, and
3. the Souslin system \(\mathcal{S} = \{ E_s \mid \text{Seq}(s) \} \) is monotonic; that is, for all \(\beta \) and \(x \), \(E_{\beta(x+1)} \subseteq E_{\beta(x)} \).

Now, as is usual with classical descriptive set theory, for a given sequence number \(\tilde{\gamma}(m) \), we shall define a set \(A^{\tilde{\gamma}(m)} \) as follows:
\[
(4) \quad \alpha \in A^{\tilde{\gamma}(m)} \iff (\exists \beta)(\forall x) R''(x, \tilde{\gamma}(m) \ast \tilde{\beta}(x)).
\]
Then we have
\[
\alpha \in A^{\tilde{\gamma}(m)} \iff (\exists \beta)(\forall x)(\forall i)_{i \leq m + x} R'(x, rstr((m)_0, (m)_1, i))
\]
\[
\iff (\forall i) i \leq m R'(x, (m)_i) \land (\exists \beta)(\forall i) R'(x, (m)_i \ast \tilde{\beta}(i))
\]
\[
\iff (\forall i) i \leq m [i = ((m)_0, (m)_1, 2) \rightarrow R(x, (m)_0, (m)_1, (m + i)_0, (m + i)_1, 1)]
\]
\[
\land (\exists \beta)(\forall i)[m + i = ((m + i)_0, (m + i)_1, 2) \rightarrow ((m + i)_0, (m + i)_1, 1) < m \rightarrow R(x, (m + i)_0, (m + i)_1, (m + i)_0, (m + i)_1, 1))]
\]
\[\{(m + i)_0 \leq m \land \{ (m + i)_0, (m + i)_1, 1 \} \geq m \rightarrow R(\alpha, (m + i)_0, (m + i)_1, \gamma((m + i)_0)) \land \beta((m + i)_0, (m + i)_1, 1 - m)) \} \land \{(m + i)_0 \geq m \rightarrow R(\alpha, (m + i)_0, (m + i)_1, \beta((m + i)_0 - m), \beta((m + i)_0, (m + i)_1, 1 - m)) \} \]

The second member of the outermost conjunction in the latter formula is equivalent to

\[(3 \exists \beta_0)(\exists \beta_1)(\forall x_0)(\forall x_1) \{(x_0, x_1, 1) \leq m \rightarrow R(\alpha, x_0, x_1, \gamma((x_0)), \gamma((x_0, x_1, 1))) \land \{(x_0) \leq m \rightarrow R(\alpha, x_0, x_1, \beta_1((x_0, x_1, 1) - m)) \land \{(x_0) \geq m \rightarrow R(\alpha, x_0, x_1, \beta_1((x_0) - m), \beta_1((x_0, x_1, 1) - m)) \} \}
\]

(Note that \(\hat{p}(m) \) is a given fixed sequence number.) Therefore, for each sequence number \(s \), \(A^s \) is an arithmetic subset of \(N^N \), too. Further, by the definition (4) we have

\[A^{[a_0, a_1, \ldots, a_k]} = \bigcup_{n=0}^{\infty} A^{[a_0, a_1, \ldots, a_k, n]}, \]

where we denote \(\langle a_0 + 1, a_1 + 1, \ldots, a_k + 1 \rangle \) by \([a_0, a_1, \ldots, a_k] \).

Now suppose that no member of \(A \) constitutes an arithmetic singleton. Let \(\alpha \in A \). Since \(A = \bigcup_{n=0}^{\infty} A^{[n]} \), there is an \(n_0 \) such that \(\alpha \in A^{[n_0]} \). \(A^{[n_0]} \) does not contain any arithmetic singleton, since its overset \(A \) does not. As seen above, \(A^{[n_0]} \) is also an arithmetic set and hence it contains no isolated elements. Therefore \(A^{[n_0]} \) is dense-in-itself. So, for each number \(m_0 \), \(A^{[n_0]} \cap \delta(\alpha([m_0])) \) is nonempty and dense-in-itself, where \(\delta(s) \) denotes the Baire interval determined by a sequence number \(s \). Let us put

\[B^{[m_0]} = A^{[n_0]} \quad \text{and} \quad F_{[m_0]} = E_{[n_0]} \]

for all \(m_0 \). From each set \(B^{[m_0]} \cap \delta(\alpha([m_0])) \) we can choose an element \(\alpha_{[m_0]} \) such that the \(\alpha_{[m_0]} \)'s satisfy the following conditions:

\[\alpha_{[m_0]} \neq \alpha, \quad \alpha_{[m_0]} \neq \alpha_{[m_0]'}, \quad \text{if} \quad m_0 \neq m_0'. \]
Since $B^{[m_0]} = \bigcup_{n=0}^{\infty} A^{[n_0,n_1]}$, for each m_0 there is an n_1 such that $\alpha_{[m_0]} \in A^{[n_0,n_1]}$. Let us put

$$B^{[m_0,m_1]} = A^{[n_0,n_1]} \quad \text{and} \quad F^{[m_0,m_1]} = E^{[n_0,n_1]}$$

for all m_1. Then $B^{[m_0,m_1]} \cap \delta(\tilde{a}_{[m_0]}([m_0+m_1+1]))$ is nonempty and dense-in-itself. From each set $B^{[m_0,m_1]} \cap \delta(\tilde{a}_{[m_0]}([m_0+m_1+1]))$, we can choose an $\alpha_{[m_0,m_1]}$ such that $\alpha_{[m_0,m_1]}$'s satisfy the following conditions:

$$\alpha_{[m_0,m_1]} \neq \alpha; \quad \alpha_{[m_0,m_1]} \neq \alpha_{[m_0,m_1]};$$
$$\alpha_{[m_0,m_1]} \neq \alpha_{[m_0,m_1]} \quad \text{if} \quad [m_0,m_1] \neq [m_0',m_1'].$$

And so on. Thus we obtain elements $\alpha_{[m_0,m_1,\ldots,m_k]} \in A$ for $k, m_i=0, 1, 2, \ldots$, and they possess the following properties:

$$(6) \quad \alpha_{[m_0,m_1,\ldots,m_k]} \neq \alpha_{[m_0,m_1,\ldots,m_k]} \quad \text{if} \quad [m_0, \ldots, m_k] \neq [m_0', \ldots, m_k'].$$
$$(7) \quad \alpha_{[m_0,m_1,\ldots,m_k]} \in \delta(\tilde{a}_{[m_0,m_1,\ldots,m_k]}([m_0+\ldots+m_k+1+k+1])).$$

Let $Q = \{\alpha_{[s]} | \text{Seq}(s) \text{ and } Lh(s)>0\}$. Then Q is dense-in-itself and hence its derived set Q' is a perfect set. Using (1)–(3) and (6)–(8) we can show that Q' is contained in A. In proving this fact, note that each E_s is a closed set. (For details, see Hahn [1, pp. 356–358].) Therefore A contains a perfect subset. This completes the proof of Theorem 1.

Since the final expression for $\alpha_{\in A^{[m]}}$ in the preceding proof is also Π_0^0, we have shown that if A is a nonempty Π_0^0 set with no Π_0^0 singleton then A contains a perfect subset. Thus we obtain the following theorem:

Theorem 3. Every nonempty countable Σ_0^{n+1} set contains a Π_0^n singleton.

References

College of Engineering, Hosei University, Tokyo, Japan

Department of Mathematics, University of Illinois, Urbana, Illinois 61801

1 This is based on a suggestion of Professor McLaughlin.