A GENERALIZATION OF MORI'S THEOREM

CHIN-PI LU

Abstact. In this article, we consider a generalization of Mori's theorem which is: Let R be a Zariski ring; if the completion of R is a unique factorization domain, then so is R.

Mori's theorem states that a Zariski ring R is a unique factorization domain (UFD) if its completion \hat{R} is a UFD. Validity of the theorem stems from the facts that R is a Gelfand ring, a filtered ring whose radical is open, and that \hat{R} is a faithfully flat R-module. From this point of view, a generalization of Mori's theorem is studied in this paper. We prove that if R is a Gelfand ring whose completion \hat{R} is a flat R-module and R is a pure submodule of \hat{R}, in particular, \hat{R} is a faithfully flat R-module, then R is a UFD whenever \hat{R} is a UFD. Applying the result, we also consider a generalization of Nagata-Mori's theorem [5].

In this paper, every ring is assumed to be a commutative ring with identity. A filtered ring R with a filtration $\{q_n; n=0, 1, 2, 3, \cdots\}$ will be denoted by (R, q_n), and its completion by (\hat{R}, q_n), where $q_0=R$ and q_n is the completion of q_n. We say that R is hat-flat if \hat{R} is a flat R-module (cf. [1]).

Definition 1. Let E be a module over a ring R, and F a submodule of E. F will be called a pure submodule of E if $rE\cap F=rF$ for all $r\in R$.

It is obvious that if the completion \hat{R} of a filtered ring R is a faithfully flat R-module, then R is a pure submodule of \hat{R}.

Definition 2. A ring with a linear topology is called a Gelfand ring if its radical is open (cf. [3, p. 44]).

Note that a hat flat Gelfand ring is necessarily a separated topological ring by [3, Corollary (5.5)]. Evidently, a filtered ring (R, q_n) is a Gelfand ring if and only if $q_1\subseteq \text{rad}(R)$. Thus every Zariski ring R is a hat-flat Gelfand ring which is a pure submodule of \hat{R} because \hat{R} is a faithfully flat R-module.

The following lemma is easy to verify.

Lemma. Let B be an ideal of a filtered ring (R, q_n). Then B is dense in $\hat{R}B$ for the $(\hat{q_n}B)$-topology.

Theorem 1. Let (R, q_n) be a Gelfand ring which satisfies the following conditions: (i) R is hat-flat and (ii) R is a pure submodule of the R-module \hat{R}. Then R is a UFD, if \hat{R} is a UFD.
Proof. Firstly, R satisfies the ascending chain condition for principal ideals because \hat{R} does and R is a pure submodule of \hat{R}. Next, let $a, b \in R$ and $P = Ra \cap Rb$. Since R is hat flat, we have that $\hat{R}P = \hat{R}a \cap \hat{R}b$ by [2, p. 32, Proposition 6]; moreover, $\hat{R}P = \hat{R}c$ for some $c \in \hat{R}P$ as \hat{R} is a UFD. According to the Lemma, there exists a $c_1 \in P$ such that $c = c_1 \mod \hat{q}_1P$, hence $\hat{R}c = \hat{R}c_1 + \hat{q}_1P$. Now put $\hat{R}c/\hat{R}c_1 = \hat{R}P/\hat{R}c_1 = E$, then E is a finitely generated \hat{R}-module and $\hat{q}_1E = E$. By [3, Proposition (5.1)], \hat{R} is a Gelfand ring, so that $\hat{q}_1 \subseteq \text{rad}(\hat{R})$. Applying Nakayama’s lemma we have $E = (0)$, that is, $\hat{R}c = \hat{R}c_1$. It follows that $P = Ra \cap Rb = Rc_1$, as R is a pure submodule of \hat{R}. Thus the intersection of any two principal ideals of R is principal, which implies that R is a UFD.

Corollary 1. Let R be a Gelfand ring such that \hat{R} is a faithfully flat R-module. Then R is a UFD, if \hat{R} is a UFD.

The method of the proof of Theorem 1 is the same as the proof of Mori’s theorem in [5, p. 2]. We demonstrated that the method still works for the rings with conditions a bit weaker than Zariski rings. Simultaneously, we have shown that Theorem 1, as well as its Corollary 1, is a generalization of Mori’s theorem.

Corollary 2. Let (R, q_n) be a Noetherian filtered ring satisfying either one of the following two conditions:

(i) R is a hat-flat Gelfand ring,

(ii) the (q_n)-topology of R is stronger than its radical topology and \hat{R} is a Noetherian ring. Then R is a UFD, if \hat{R} is a UFD.

Proof. For case (i), the corollary follows from Corollary 1 to Theorem 1 and [3, Proposition (5.4)].

For case (ii), it is a result of Corollary 1 to Theorem 1 and [4, Proposition (5.4)].

Definition 3. A topological ring is said to be topologically artinian if it is equipped with a linear topology and there exists a fundamental system of neighborhoods of 0 consisting of ideals of finite length.

Proposition. A Gelfand ring (R, q_n) which is topologically artinian is necessarily a quasi-semilocal ring.

Proof. Since R is a Gelfand ring, $q_1 \subseteq \text{rad}(R)$. Moreover, R/q_1 is an artinian ring, hence there exist only a finite number of maximal ideals in R/q_1. Now, we can conclude that there exist only a finite number of maximal ideals in R, because every maximal ideal of R contains $q_1 \subseteq \text{rad}(R)$.

Theorem 2. Let R be a hat-flat Gelfand ring which is topologically artinian. Then R is a UFD, if \hat{R} is a UFD.
Proof. The radical of \(R \) is open as \(R \) is a Gelfand ring, whence every maximal ideal of \(R \) is open. Consequently, \(\tilde{R} \) is a faithfully flat \(R \)-module due to [1, Proposition 5]. Hence the proposition follows immediately from Corollary 1 to Theorem 1.

In the following Theorem 3 we consider a generalization of Nagata-Mori’s theorem [6, p. 56, Theorem 10].

Theorem 3. Let \((R, q_n)\) be a hat-flat ring which is either a Noetherian ring, or a separated topologically artinian ring, satisfying the ascending chain condition (a.c.c.) for principal ideals. If \(\tilde{R} \) is a UFD and \(S=1+q_n \) is generated by prime elements of \(R \), then \(R \) is also a UFD.

Proof. Suppose that \(R \) is a Noetherian hat-flat ring, and put \(R' = S^{-1}R \). Then \(R' \) is a Gelfand ring and \(\tilde{R} = \tilde{R}' \) by Theorem (5.1) and Corollary (5.2) both of [3]. Since \(\tilde{R} \) is a flat \(R \)-module, it is a flat \(R' \)-module by [3, Proposition (5.6)]. Thus \(R' \) is a Noetherian hat-flat Gelfand ring. Since \(\tilde{R} = \tilde{R}' \) is a UFD, \(R' \) is also a UFD by Corollary 2 to Theorem 1. Clearly, \(R \) is an integral domain which satisfies the a.c.c. for principal ideals, hence \(R \) is a UFD by Nagata’s theorem [5, Lemma 1.7]. Next, we assume the other case for \(R \). Clearly, \((R', S^{-1}q_n)\) is a Gelfand ring which is topologically artinian, and \(R \subseteq R' \subseteq \tilde{R} \) because \((\tilde{R}, q_n)\) is a Gelfand ring. This implies that \(\tilde{R}' = \tilde{R} \) since \((R', S^{-1}q_n)\) is a subspace of \((\tilde{R}, q_n)\) due to the fact that \(R \) is separated (cf. [6, p. 55, the proof of remark]). Moreover \(R' \) is hat-flat by [2, Proposition 6]. Thus \(R' \) is a hat-flat Gelfand ring which is topologically artinian. According to Theorem 2, \(R' \) is a UFD. Now, that \(R \) is a UFD also follows from Nagata’s theorem.\(^1\)

Bibliography

Department of Mathematics, University of Colorado, Denver Center, Denver, Colorado 80202

\(^1\)In Nagata’s theorem the ring need not be Noetherian if it satisfies the a.c.c. for principal ideals.