Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An extension of the Noether-Deuring theorem


Author: Klaus W. Roggenkamp
Journal: Proc. Amer. Math. Soc. 31 (1972), 423-426
DOI: https://doi.org/10.1090/S0002-9939-1972-0286839-7
MathSciNet review: 0286839
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: Let $ R$ be a commutative semilocal noetherian ring, $ \Lambda $ a left noetherian $ R$-algebra and $ M,N$ finitely generated left $ \Lambda $-modules such that $ {\operatorname{End} _\Lambda }(M)$ is of finite type over $ R$. By $ \hat R$ we denote the $ (\operatorname{rad} R)$-adic completion of $ R$.

Theorem. $ M$ is $ \Lambda $-isomorphic to a direct summand of $ N$ iff $ \hat R{ \otimes _R}M$ is $ \hat R{ \otimes _R}\Lambda $-isomorphic to a direct summand of $ \hat R{ \otimes _R}N$.

This result is used to prove a generalization of the Noether-Deuring theorem. Let $ S$ be a commutative $ R$-algebra which is a faithful projective $ R$-module of finite type; then $ M$ is $ \Lambda $-isomorphic to direct summand of $ N$ iff $ S{ \otimes _R}M$ is $ S{ \otimes _R}\Lambda $-isomorphic to a direct summand of $ S{ \otimes _R}N$.


References [Enhancements On Off] (What's this?)

  • [1] M. Auslander and O. Goldman, Maximal orders, Trans. Amer. Math. Soc. 97 (1960), 1-24. MR 22 #8034. MR 0117252 (22:8034)
  • [2] H. Bass, $ K$-theory and stable algebra, Inst. Hautes Études Sci. Publ. Math. No. 22 (1964), 5-60. MR 30 #4805. MR 0174604 (30:4805)
  • [3] -, Algebraic $ K$-theory, Benjamin, New York, 1968. MR 40 #2736.
  • [4] A. Białynicki-Birula, On the equivalence of integral representations of groups, Proc. Amer. Math. Soc. 26 (1970), 371-377. MR 0268291 (42:3190)
  • [5] N. Bourbaki, Algèbre, Actualités Sci. Indust., no. 1272, Hermann, Paris, 1959. MR 21 #6384. MR 0107661 (21:6384)
  • [6] -, Algèbre commutative. Chap. 3, Actualités Sci. Indust., no. 1293, Hermann, Paris, 1961. MR 30 #2027.
  • [7] A. Dress, On the decomposition of modules, Bull. Amer. Math. Soc. 75 (1969), 984-986. MR 39 #5544. MR 0244227 (39:5544)
  • [8] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des Schémas et des morphismes de Schémas. II, Inst. Hautes Études Sci. Publ. Math. No. 24 (1965), 231 pp. MR 33 #7330. MR 0199181 (33:7330)
  • [9] R. G. Swan, The number of generators of a module, Math. Z. 102 (1967), 318-322. MR 36 #1434. MR 0218347 (36:1434)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0286839-7
Keywords: Algebra, semilocal noetherian ring, finitely presented module, isomorphism, completion, Noether-Deuring theorem
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society