PRODUCTS OF UNCOUNTABLY MANY k-SPACES

N. NOBLE

Abstract. It is shown that if a product of nonempty spaces is a k-space then for each infinite cardinal n some product of all but n of the factors has each n-fold subproduct n-\mathcal{K}_0-compact (each n-fold open cover has a finite subcover). An example is given, for each regular α, of a space X which is not α-\mathcal{K}_0-compact (so $X^{\alpha+}$ is not a k-space) for which X^α is a k-space.

1. Introduction. A subset F of a topological space X is k-closed if $F \cap K$ is closed in K for each compact subset K of X. A space in which each k-closed subset is closed is called a k-space. (No separation axioms will be assumed, so this definition differs from some of the other published definitions.) Although conditions under which finite or countable products of k-spaces will be k-spaces have been extensively studied, for instance in [1], [2], [4], [6], and [7], the only noteworthy results concerning products of k-spaces having uncountably many factors are included in the fact, proved in [5], that for a product of nonempty T_1-spaces to be a k-space, some product of all but countably many of its factors must be countably compact. We improve and extend this result with:

Theorem. If a product of nonempty spaces is a k-space then, for each infinite cardinal n, some product of all but n of its factors has each n-fold subproduct n-\mathcal{K}_0-compact.

Recall that a space is n-\mathcal{K}_0-compact if each n-fold open cover contains a finite subcover. As an immediate consequence of this theorem (together with Tychonoff’s Theorem) we have:

Corollary. All powers of a space X are k-spaces if and only if X is compact.

It is amusing to contrast this result with the fact, established in [8], that all powers of a T_1-space X are normal if and only if X is compact. (Thus all powers of a T_1-space X are k-spaces if and only if all powers of

Received by the editors December 2, 1970.

AMS 1969 subject classifications. Primary 5425, 5452.

Key words and phrases. Product spaces, k-spaces, spaces with weak topologies.
X are normal.) The strength of our theorem on \(k \)-spaces is indicated by the following:

Example. For each regular cardinal \(\kappa \) there exists a space \(X \) such that \(X^\kappa \) is a \(k \)-space but \(X^m \) is not a \(k \)-space for any larger cardinal \(m \).

Indeed, \(X \) can be taken to be \(\kappa \). (As usual, a cardinal \(\kappa \) is identified with the smallest ordinal of cardinality \(\kappa \) and, unless otherwise indicated, is assumed to bear the order topology.) This space \(X \) is certainly not \(\kappa \)-\(\mathcal{K}_\omega \)-compact so, by the Theorem, \(X^m \) is not a \(k \)-space for any \(m \) greater than \(\kappa \). That \(X^\kappa \) is a \(k \)-space will follow from the more general considerations below.

Call a space \(\kappa \)-determined if a subset is closed whenever it meets each subset \(S \) having \(\kappa \) or fewer elements in a set which is closed in \(S \). Recall that a space is \(\kappa \)-bounded if each subset with \(\kappa \) or fewer elements is contained in a compact set. Clearly \(\kappa \)-boundedness is preserved by arbitrary products and each \(\kappa \)-bounded \(\kappa \)-determined space is a \(k \)-space.

Proposition 1. For \(\kappa \) an infinite cardinal, an \(m \)-fold product of \(\kappa \)-determined spaces is \(\kappa \)-determined if and only if all but at most \(\kappa \) of the factors are indiscrete.

We call a space \(\prec \kappa \)-bounded if each subset with fewer than \(\kappa \) elements is contained in a compact set and we call a space \(\prec \kappa \)-determined if a subset is closed whenever it meets each subset \(S \) having fewer than \(\kappa \) elements in a set which is closed in \(S \). Note that if \(\kappa = \kappa \) and \(\kappa \) is regular, then \(X \) is \(\prec \kappa \)-bounded and \(\prec \kappa \)-determined. Thus our next result shows that, for this \(X \), \(X^\kappa \) is a \(k \)-space.

Proposition 2. Let \(X = \prod \kappa \in \kappa^+ X_\kappa \). If each \(X_\kappa \) is \(\prec \kappa \)-bounded and \(\prec \kappa \)-determined, then \(X \) is a \(k \)-space.

2. **Proofs.**

Proof of the Theorem. The proof is by induction on \(\kappa \), so suppose that the Theorem holds for each cardinal less than \(\kappa \) and that \(X = \prod \kappa \in \kappa^+ X_\kappa \) is a nonempty \(k \)-space. In order to show that some product of all but at most \(\kappa \) of the factors of \(X \) has each \(\kappa \)-fold subproduct \(\kappa \)-\(\mathcal{K}_\omega \)-compact it suffices, by [5, Theorem 1], to show that all but \(\kappa \) of them must be \(\kappa \)-\(\mathcal{K}_\omega \)-compact. Suppose that this is not the case; since by the induction hypothesis all but at most \(\kappa \) of the factors are \(m \)-\(\mathcal{K}_\omega \)-compact for each \(\kappa \) less than \(\kappa \), we may suppose that each \(X_\kappa \) has an \(\kappa \)-fold open cover which has no subcover of smaller cardinality. Passing to complements of unions, each \(X_\kappa \) thus contains a nested family \(\{ A_\lambda : \lambda \in \kappa \} \) of nonempty closed sets with \(\bigcap \{ A_\lambda : \lambda \in \kappa \} = \emptyset \). Further, we may suppose that for each \(\alpha \) there exists a point \(y_\alpha \) in \(X \setminus A_\alpha \).

For each \(\lambda \) in \(\kappa \) let \(B_\lambda \) be the union, over all \(\gamma \) in \(\kappa \), of the product sets
whose \(\alpha \)th factor is \(\{y_\gamma\} \) for \(\gamma \leq \alpha \leq \gamma + \lambda \) and \(A_\lambda^\alpha \) otherwise. Let \(C_\lambda \) be the closure of \(\bigcup_{\beta \leq \lambda} B_\beta \) and set \(C = \bigcup_{\lambda \in \mathbb{n}} C_\lambda \); we will show that \(C \) is \(k \)-closed but not closed.

To see that \(C \) is not closed, note that since any finite subset of \(n^+ \) is contained in a segment \([\gamma, \gamma + \lambda] \) for some \(\gamma \) and \(\lambda \), the point \(y = (y_\gamma) \) is in the closure of \(C \). On the other hand, \(y \) is not in \(C \) since, for \(\lambda \) in \(n \), \((X_0 \setminus A_0^\lambda) \times (X_{\lambda+1} \setminus A_{\lambda+1}^\lambda) \times \prod_{x \neq \{x \neq \lambda + 1} X_x \) is a neighborhood of \(y \) which does not meet \(\bigcup_{\beta \leq \lambda} B_\beta \), so \(y \) is not in the closure of \(C_\lambda \). Now let \(K = \prod_a X_a \) be compact, say \(K = \prod_a K_a \). We show that \(K \cap C \) is closed by showing \(K \cap C = K \cap C_\lambda \) for some \(\lambda \) — since \(C_\lambda \) is closed, this suffices. For each \(\alpha \), note that \(K_\lambda \) cannot meet cofinally many of the decreasing family \(\{A_\alpha^\lambda : \lambda \in n\} \) since its intersection is empty. Thus there exists a \(\lambda(\alpha) \) in \(n \) such that \(K_\lambda \cap A_\lambda^\alpha = \emptyset \) for each \(\lambda > \lambda(\alpha) \). Since the domain of \(\lambda \) is \(n^+ \) while its range is \(n \), there exists a \(\lambda_0 \) in \(n \) such that \(\{x : \lambda(x) = \lambda_0\} \) has cardinality \(n^+ \). For \(\lambda > \lambda_0 \), \(K \cap C_\lambda = K \cap C_{\lambda_0} \), since for each point \(x \) in the closure of \(\bigcup B_\beta : \beta < \gamma = \lambda \) \(x_\alpha \) is in \(A_{\alpha+1}^\lambda \) with fewer than \(n \) exceptions. Consequently \(K \cap C = K \cap C_{\lambda_0} \), so \(K \cap C \) is closed. This contradicts the hypothesis that \(\prod_a X_a \) is a \(k \)-space and thus completes the proof.

The proof above is a generalization of the proof sketched in [3, Exercise 7-J]. The first observation of our next proof implies that each subspace of an \(n \)-determined space is \(n \)-determined.

Proof of Proposition 1. Let us first note that if \(X \) is \(n \)-determined and \(x \) is in the closure of a subset \(A \) of \(X \), then \(x \) is in the closure of some \(n \)-fold or smaller subset of \(A \): Since an \(n \)-fold union of sets of cardinality \(n \) itself has cardinality \(n \), the operator which adjoins to \(A \) the closures of all of its \(n \)-fold subsets is idempotent, and is therefore the closure operator. Now suppose that \(X = \prod_{\alpha \in n} X_\alpha \) where each \(X_\alpha \) is \(n \)-determined and let \(x \) be in the closure of a subset \(A \) of \(X \). We will show that \(X \) is \(n \)-determined by showing that \(x \) is in the closure of some \(n \)-fold subset of \(A \).

Let \(F \) be any finite subset of \(n \). Since \(x \) is in the closure of \(A \), \(\pi_F(x) \) is in the closure of \(\pi_F(A) \), and hence, for some \(n \)-fold or smaller subset \(A_F \) of \(A \), \(\pi_F(x) \) is in the closure of \(\pi_F(A_F) \). Let \(A' = \bigcup \{A_F : F \subseteq n\} \) is finite and note that the cardinality of \(A' \) is less than or equal to \(n \). Since \(x \) is clearly in the closure of \(A' \), \(A' \) is as desired.

For the converse, suppose \(X = \prod_{\alpha \in n} X_\alpha \) where each \(X_\alpha \) contains a point \(x_\alpha \) and a closed subset \(F_\alpha \) with \(x_\alpha \) not in \(F_\alpha \). Let \(x \) be the point \((x_\alpha) \) and let \(F \) be the set of points in \(X \) whose \(\alpha \)th coordinates, with at most \(n \) exceptions, lie in \(F_\alpha \). Clearly \(F \) meets each \(n \)-fold or smaller set in a closed set. Since \(x \) is in the closure of \(F \) but is not in \(F \), \(F \) is not closed, so this shows that \(X \) is not \(n \)-determined.

Proof of Proposition 2. Let \(A \subseteq X \) be \(k \)-closed and let \(x \) be any point in the closure of \(A \). We will produce a subset \(A' \) of such that \(x \) is in the
closure of A' and such that, for each α in η, $\pi_\alpha A'$ has cardinality less than η. Since each X_α is $<\eta$-bounded, each $\pi_\alpha A'$, and hence A' itself, is contained in a compact set. It follows that x must be in A and hence that X is a k-space, as desired.

Let π^α denote the projection from X to $X^\alpha = \prod_{\beta < \alpha} X_\beta$ and note that, since η is regular, the proof of Proposition 1 adapts easily to show that X^α is $<\eta$-determined. We first show that, for each α, $\pi^\alpha(x)$ is in $\pi^\alpha(A)$. Certainly $\pi^\alpha(x)$ is in the closure of $\pi^\alpha(A)$ and hence, since X^α is $<\eta$-determined, $\pi^\alpha(x)$ is in the closure of $\pi^\alpha(B)$ for some subset B of A having fewer than η elements. Since X is $<\eta$-bounded, B is contained in some compact set K. Let K_1 be the projection of K onto $\prod_{\beta \geq \alpha} X_\beta$, and let $K_2 = \pi^\alpha(K) \cup \{\pi^\alpha(x)\}$. Since A is k-closed, $A \cap K_1 \times K_2$ is closed in $K_1 \times K_2$ and therefore its projection onto K_2, which is just $\pi^\alpha(A) \cap K_2$, is closed in K_2. Since $\pi^\alpha(B) \subseteq \pi^\alpha(A) \cap K_2$ and $\pi^\alpha(x)$ is in the intersection of the closure of $\pi^\alpha(B)$ with K_2, it follows that $\pi^\alpha(x)$ is in $\pi^\alpha(A)$, as desired.

To construct the set A', choose, for each α, a point x^α in A such that $\pi^\alpha(x^\alpha) = \pi^\alpha(x)$ and let $A' = \{x^\alpha : \alpha \in \eta\}$. It is clear that A' has the desired properties, so the proof is complete.

REFERENCES