Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Products of uncountably many $ k$-spaces


Author: N. Noble
Journal: Proc. Amer. Math. Soc. 31 (1972), 609-612
DOI: https://doi.org/10.1090/S0002-9939-1972-0287503-0
MathSciNet review: 0287503
Full-text PDF

Abstract | References | Additional Information

Abstract: It is shown that if a product of nonempty spaces is a $ k$-space then for each infinite cardinal $ \mathfrak{n}$ some product of all but $ \mathfrak{n}$ of the factors has each $ \mathfrak{n}$-fold subproduct $ \mathfrak{n} - {\aleph _0}$-compact (each $ \mathfrak{n}$-fold open cover has a finite subcover). An example is given, for each regular $ \mathfrak{n}$, of a space $ X$ which is not $ \mathfrak{n} - {\aleph _0}$-compact (so $ {X^{{\mathfrak{n}^ + }}}$ is not a $ k$-space) for which $ {X^\mathfrak{n}}$ is a $ k$-space.


References [Enhancements On Off] (What's this?)

  • [1] A. V. Arhangel'skiĭ, Bicompact sets and topological spaces, Trudy Moskov. Mat. Obšč. 13 (1965), 3-55=Trans. Moscow Math. Soc. 1965, 1-62. MR 33 #3251. MR 0195046 (33:3251)
  • [2] D. E. Cohen, Spaces with weak topology, Quart. J. Math. Oxford Ser. (2) 5 (1954), 77-80. MR 16, 62. MR 0063043 (16:62c)
  • [3] J. L. Kelley, General topology, Van Nostrand, Princeton, N.J., 1955. MR 16, 1136. MR 0070144 (16:1136c)
  • [4] E. Michael, Local compactness and Cartesian products of quotient maps and $ k$-spaces, Ann. Inst. Fourier (Grenoble) 18 (1968), fasc. 2, 281-286 MR 39 #6256. MR 0244943 (39:6256)
  • [5] N. Noble, A generalization of a theorem of A. H. Stone, Arch. Math. 18 (1967), 394-395. MR 36 #5883. MR 0222833 (36:5883)
  • [6] -, Products of quotient maps and spaces with weak topologies (to appear).
  • [7] -, The continuity of functions on Cartesian products, Trans. Amer. Math. Soc. 149 (1970), 187-198. MR 41 #2636. MR 0257987 (41:2636)
  • [8] -, Products with closed projections. II, Trans. Amer. Math. Soc. 160 (1971), 169-183. MR 0283749 (44:979)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0287503-0
Keywords: Product spaces, $ k$-spaces, spaces with weak topologies
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society