THE CLASS NUMBER OF $\mathbb{Q}(\sqrt{-p})$, FOR $p \equiv 1 \pmod{8}$ A PRIME

EZRA BROWN

Abstract. Let $h(-p)$ be the class number of the quadratic field $\mathbb{Q}(\sqrt{-p})$, where $p \equiv 1 \pmod{8}$ is a prime. Write $p = a^2 + b^2 = 2e^2 - d^2$, where $a \equiv e \equiv d \equiv b + 1 \equiv 1 \pmod{2}$ and $e > 0$. We prove that $h(-p) \equiv 0$ or $4 \pmod{8}$ according as $(e|p) = 1$ or -1; using this, we prove that $h(-p) \equiv (p-1)/2 + b \pmod{8}$. The proofs are elementary, relying on the theory of composition of binary quadratic forms.

1. Introduction. Let $h(-d)$ denote the class number of the algebraic number field $\mathbb{Q}(\sqrt{-d})$. Recently, Barrucand and Cohn (see [1]) and Hasse (see [2] and [3]) have studied congruence conditions on $h(-p)$ and $h(-2p)$ modulo 8, where p is an odd prime. In this paper we present some new results related to this problem; in particular, we prove the following theorem.

Theorem 1. Let $p \equiv 1 \pmod{8}$ be a prime, and write $p = a^2 + b^2$, where a is odd and b is even. Then $h(-p) \equiv (p-1)/2 + b \pmod{8}$.

2. Preliminary definitions and results. Our study uses the Gaussian theory of composition of binary quadratic forms; we begin by reviewing some standard definitions and results. For details and proofs, see [4].

Definitions. A binary quadratic form $[a, b, c] = ax^2 + bxy + cy^2$ is called primitive if $(a, b, c) = 1$ and ambiguous if $a \mid b$. An ambiguous class of forms is one which contains an ambiguous form. The principal form of discriminant d is $f_1 = [1, e, (e-d)/4]$, where $e = 0$ or $1 \equiv d \pmod{4}$; the class (genus) containing f_1 is called the principal class (genus). The primitive classes of discriminant d form a group under Gaussian composition, called the class group (if $d < 0$, only the positive-definite classes are considered). The symbol $(p|q) = 1$ or -1 according as p is or is not a biquadratic residue (mod q), and $(p|q)$ is the Legendre quadratic residue symbol.

Proposition. If A and B are primitive classes of discriminant d, there exist forms $[a_1, b, a_2c]$ in A and $[a_2, b, a_1c]$ in B. The product (composite)
class \(AB \) of \(A \) and \(B \) is the class containing \([a_1, a_2, b, c]\). The ambiguous classes are precisely those classes \(A \) such that \(A^2 = I \), the principal class; every class in the principal genus is a square, and each genus contains the same number of classes. If \(p \equiv 1 \pmod{8} \) is a prime, \(h(-p) \) is the number of positive-definite classes of discriminant \(-4p \) (=determinant \(p \)).

3. The main results. Proof of Theorem 1 uses the following.

Theorem 2. Let \(p \equiv 1 \pmod{8} \) be a prime. Write \(p = a^2 + b^2 = 2e^2 - d^2 \), where \(a \equiv d \equiv e \equiv b + 1 \equiv 1 \pmod{2} \) and \(e > 0 \). Then \(h(-p) \equiv 0 \) or \(4 \pmod{8} \) according as \((e|p) = 1 \) or \(-1 \).

Proof. If \(p = 2e^2 - d^2 \), then the form \(f = [e, 2d, 2e] \) has determinant \(p \).
Denote by \(A \) the class of \(f \), by \(B \) the class of \(g = [2, 2, (p+1)/2] \), and by \(I \) the class of \(f_1 = [1, 0, p] \). The forms of determinant \(p \) have generic characters \((m|p)\) and \((-1|m)\), and are divided into two genera: the two ambiguous classes are \(I \) and \(B \). Since \((2|p) = (-1|(p+1)/2) = 1\), \(B \) is in the principal genus.

If \((e|p) = 1\), then \(A \) is in the principal genus; by the proposition, \(A = C^2 \) for some class \(C \). Now \(A^2 = B \), since \([e, 2d, 2e^2] = [e^2, 2d, 2e] \), which is equivalent to \(g \). Since \(A^2 \) contains \([2, 2d, e^2]|e, 2d, 2e| = [2e, 2d, e], \)
and hence \(D = A \) or \(A^{-1} \). If \(n \geq 3 \), then either \(A = (D^{n-1})^2 \) or \(A = ((D^{-1})^{n-1})^2 \), contrary to our assumption that \(A \) is in the nonprincipal genus, and thus not a square. Hence, the only elements of \(G \) of order \(2^n \) are \(A, A^{-1}, B \) and \(I \). Let \(H \) be the subgroup of \(G \) generated by \(A \); we show that \(G/H \) has odd order. If there is a class \(K \) whose square is in \(H \), then \(K^2 = A, A^2, A^3 \) or \(I \). In these cases, we see that either \(A \) is in the principal genus, \(K = A \) or \(A^{-1} \), \(A \) is in the principal genus, or \(A = B \). None of these are possible by previous reasoning; hence \(G/H \) has odd order, and we have \(h(-p) = \text{ord } G = \text{ord } H \cdot \text{ord } (G/H) = 4 \text{ ord } (G/H) \equiv 4 \pmod{8} \). Q.E.D.

Proof of Theorem 1. Let \(p = a^2 + b^2 = 2e^2 - d^2 \), where \(a \equiv d \equiv e \equiv b + 1 \equiv 1 \pmod{2} \). From the congruences \(2e^2 \equiv d^2 \pmod{p} \) and \(2e^2 \equiv p \pmod{d} \), we find that \((e|p) = (2|p)_4(d|p) = (2|p)_4(p|d) = (2|p)_4(2|d) \). Since \(e \) is odd, \(2e^2 \equiv 2 \pmod{16} \); hence \(p \equiv 2 - d^2 \pmod{16} \). Thus, \(p \equiv 1 \) or \(9 \pmod{16} \) according as \((2|d) = 1 \) or \(-1 \). Then \((e|p) = (2|p)_4 \) or \(- (2|p)_4 \) according as \(p \equiv 1 \) or \(9 \pmod{16} \). It is well known (see [5]) that if \(p \equiv 1 \)
(mod 8) is a prime represented by $a^2 + b^2$ with b even, then $(2|p)_k = (-1)^{k/4}$.
Now, if $p \equiv 1 \pmod{16}$, then $(e|p) = 1$ if and only if $b \equiv 0 \pmod{8}$; if $p \equiv 9 \pmod{16}$, then $(e|p) = 1$ if and only if $b \equiv 4 \pmod{8}$. In each case, $(e|p) = 1$ or -1 according as $(p - 1)/2 + b \equiv 0$ or $4 \pmod{8}$. Hence, by Theorem 2, we have that $h(-p) \equiv (p - 1)/2 + b$ (mod 8). Q.E.D.

REFERENCES