Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A representation theorem for $ L^{p}$ spaces


Author: Marek Kanter
Journal: Proc. Amer. Math. Soc. 31 (1972), 472-474
MSC: Primary 46.35
DOI: https://doi.org/10.1090/S0002-9939-1972-0290088-6
MathSciNet review: 0290088
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using the theory of symmetric stable process of index $ p \in (0,2]$, we prove that if a sepaéable Frechet space $ L$ has all its finite dimensional subspaces linearly isometric with a subspace of $ {L^p}[0,1]$ then $ L$ itself is linearly isometric with a subspace of $ {L^p}[0,1]$.


References [Enhancements On Off] (What's this?)

  • [1] J. Bretagnolle, D. Dacunha-Castelle and J.-L. Krivine, Lois stables et espaces $ {L^p}$, Ann. Inst. H. Poincaré Sect. B 2(1965/66), 231-259. MR 34 #3605. MR 0203757 (34:3605)
  • [2] N. Dunford and J. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York and London, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [3] P. Levy, Théorie de l'addition des variables aléatoires, Gauthier-Villars, Paris, 1925.
  • [4] M. Schilder, Some structure theorems for the symmetric stable laws, Ann. Math. Statist. 41 (1970), 412-421. MR 40 #8122. MR 0254915 (40:8122)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46.35

Retrieve articles in all journals with MSC: 46.35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0290088-6
Keywords: Linear isometry, symmetric stable process, weak convergence of measures
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society