THE HYPERSPACE OF A PSEUDOARC IS A CANTOR MANIFOLD

TOOG NISHIURA AND CHOON-JAI RHEE

Abstract. The following theorem which was conjectured by C. Eberhart and S. B. Nadler, Jr., in [EN] is proved.

Theorem. The hyperspace of nonvoid subcontinua of a pseudoarc is a two-dimensional Cantor manifold.

1. Introduction. The hyperspace $C(X)$ of nonvoid subcontinua of a metric continuum X has been investigated extensively. (We will restrict our discussion to metric continua.) It is known that $C(X)$ is always compact and arcwise connected [KE]. The basic work [S] establishes the relationship between $C(X)$ and inverse limit spaces. Inverse limit methods have yielded further properties of $C(X)$. Namely, $C(X)$ is acyclic in all dimensions [S], unicoherent [S], [N], and has dimension exceeding one for nondegenerate X [EN]. By specializing X, much more can be said of $C(X)$. Notable works along this line are [D1] and [D2] where X is locally connected. The hyperspace of an hereditarily indecomposable continuum X also has been studied. See [KE], [EN], [R], [T] and [H]. The present paper concerns itself with one such hereditarily indecomposable continuum, the pseudoarc. It is known that the hyperspace of a pseudoarc is embeddable in Euclidean three-dimensional space [T], [H] and that its dimension is two [EN]. We add to the large collection of facts about $C(X)$ the theorem stated in the abstract. This theorem improves the dimension two assertion of [EN].

2. The function μ. Let X be a nondegenerate metric continuum and $C(X)$ be the space of all nonvoid subcontinua of X with the Hausdorff metric [KU]. In [KE], Kelley noted the existence (originally due to Whitney [W]) of a real-valued function μ defined on $C(X)$ and having

Presented to the Society, December 21, 1970; received by the editors February 10, 1971.

AMS 1970 subject classifications. Primary 54B20, 54F45.
Key words and phrases. Pseudoarc, hyperspace of continua, dimension, Cantor manifold.

The first author was partially supported by the National Science Foundation Grant NSF GP-12915.
the following properties:

1. \(p \) is continuous;
2. If \(A, B \subseteq C(X) \), \(A \subseteq B \) and \(A \neq B \), then \(p(A) < p(B) \);
3. \(p(X) = 1 \);
4. \(p(\{x\}) = 0 \) for each \(x \in X \).

He proved among others that

(a) \(C(X) \) is an arcwise connected continuum;
(b) if \(X \) is hereditarily indecomposable, \(A, B \subseteq C(X) \), \(A \cap B \neq \emptyset \) and \(p(A) = p(B) \) then \(A = B \);
(c) \(X \) is hereditarily indecomposable if and only if \(C(X) \) contains a unique arc between every pair of its elements.

Suppose further that \(X \) is a pseudoarc. Then, in [R], it was observed that the space \(\mu^{-1}(t), 0 \leq t < 1 \), is a totally pathwise disconnected continuum. Subsequently, Eberhart and Nadler in [EN] observed that \(\mu^{-1}(t) \) is a continuous decomposition of \(X \) and hence, by [B1],
(d) \(\mu^{-1}(t) \) is a pseudoarc for \(0 \leq t < 1 \) whenever \(X \) is a pseudoarc.

We now prove three lemmas which will be needed later.

Lemma 2.1. Suppose \(X \) is a pseudoarc and \(0 \leq t < 1 \). Then there is a homeomorphism \(h_t : C(X) \to \mu^{-1}(t) \) such that \(h_t[0] = t \).

Proof. Using (d) above, we let \(h : X \to \mu^{-1}(t) \) be a homeomorphism. Define a mapping \(h \) on \(C(X) \) onto the hyperspace \(C(\mu^{-1}(t)) \) of the space \(\mu^{-1}(t) \) by \(h(A) = h(A) \) for each \(A \in C(X) \). Then \(h \) is a homeomorphism.

Let \(2^X \) be the space of all nonvoid closed subsets of \(X \) with the Hausdorff metric, and \(2^{2^X} \) be the space of all nonvoid closed subsets of \(2^X \) with Hausdorff metric. Let \(\sigma : 2^{2^X} \to 2^X \) be defined by \(\sigma(\mathcal{A}) = \bigcup \{ A \in 2^X : A \in \mathcal{A} \} \), \(\mathcal{A} \in 2^{2^X} \). In [KE], it is shown that \(\sigma \) is continuous. Since \(C(\mu^{-1}(t)) \subseteq 2^{2^X} \), we let \(\sigma \) be the restriction on \(C(\mu^{-1}(t)) \). Then \(\sigma(\mathcal{A}) \) is a subcontinuum of \(X \), and thus \(\sigma(\mathcal{A}) \subseteq C(X) \). Let \(\mathcal{A} \subseteq \sigma(\mathcal{A}) \), so that by the property (2) of \(\mu \), \(\mu(A) \leq \mu(\sigma(\mathcal{A})) \). This implies that \(\sigma(\mathcal{A}) \subseteq \mu^{-1}([t, 1]) \). If \(A \subseteq \mu^{-1}([t, 1]) \), then \(\mu(A) = s, s \geq t \). Let \(\mathcal{A} = \{ B \in \mu^{-1}([t, 1]) : B \subseteq A \} \). For each \(x \in A \), since the unique arc \(\mathcal{A} \) in \(C(X) \) from \(\{ x \} \) to \(X \) must meet \(\mu^{-1}(t) \), there is an element \(B \in \mu^{-1}(t) \) such that \(x \in B \) and \(B \subseteq A \) [KE]. We would like to show that \(\mathcal{A} \subseteq C(\mu^{-1}(t)) \). Consider the projection mapping \(f \) of \(X \) onto the space \(\mu^{-1}(t) \) defined by \(f(x) = B \) if \(x \in B \). This function is continuous [R], and \(f(A) = \mathcal{A} \). Since \(A \) is a subcontinuum of \(X \), so is \(\mathcal{A} \) in \(\mu^{-1}(t) \). Therefore \(\mathcal{A} \subseteq C(\mu^{-1}(t)) \). Thus \(\sigma(\mathcal{A}) = A \) and \(\sigma \) is a continuous mapping of \(C(\mu^{-1}(t)) \) onto \(\mu^{-1}([t, 1]) \). The fact that \(\sigma \) is one-to-one follows from (b) above. Therefore \(\sigma : C(\mu^{-1}(t)) \to \mu^{-1}([t, 1]) \) is a homeomorphism.
We let \(h_t : C(X) \to \mu^{-1}[t, 1] \) be the homeomorphism defined by \(h_t = \sigma^{k-1} h_1 \). The lemma is now proved.

Lemma 2.2. Suppose \(X \) is a pseudoarc and \(0 \leq t < 1 \). Then there is a mapping \(g_t : C(X) \to C(X) \) such that \(g_t \) restricted to \(\mu^{-1}[t, 1] \) is \(h_t^{-1} \) and \(g_t[\mu^{-1}[0, t]] = \mu^{-1}(0) \).

Proof. For each \(A \in \mu^{-1}[0, t] \) there is a unique set \(B \subseteq \mu^{-1}(A) \) such that \(A \subseteq B \). Let \(g_t(A) = h_t^{-1}(B) \). It is clear that \(g_t \) is continuous on \(\mu^{-1}[0, t] \). If \(g_t \) is defined to be \(h_t^{-1} \) on \(\mu^{-1}[t, 1] \) then the desired mapping is constructed.

Since \(\mu \) is a closed continuous mapping, we have immediately the following lemma.

Lemma 2.3. For each closed set \(F \) and open set \(\emptyset \subseteq \mu^{-1}[F] \), there is an open set \(Q \) such that \(\mu^{-1}[F] \subseteq \mu^{-1}[Q] \subseteq \emptyset \).

Finally, we remark that, if \(h : C(X) \to C(X) \) is a homeomorphism and \(X \) is a pseudoarc then necessarily \(h[\mu^{-1}(0)] = \mu^{-1}(0) \) and \(h(X) = X \).

3. The dimension of the hyperspace of a pseudoarc. In this section we prove two theorems concerning the dimension of the hyperspace \(C(X) \) of a pseudoarc \(X \). The first theorem has been established by Eberhart and Nadler [EN]. The present proof is new and relies only on properties of the pseudoarc. In the above-mentioned paper, it is observed that \(C(X) \) is of dimension two at each point of \(\mu^{-1}(0, 1) = \{ A \in C(X) : 0 < \mu(A) < 1 \} \).

The second theorem of this section shows that \(C(X) \) is also of dimension two at \(X \). This fact will be used in the next section to prove the main theorem.

Theorem 3.1. If \(X \) is a pseudoarc then the dimension of \(C(X) \) is two.

Proof. Since \(C(X) \) is a nondegenerate continuum, we have \(\dim C(X) \geq 1 \). From Theorem VI.7 of [HW], we have

\[
\dim C(X) \leq \dim \mu[C(X)] + \sup \{ \dim \mu^{-1}(t) : 0 \leq t \leq 1 \}.
\]

From §2 above, we have that the right side of the above inequality is two since the dimension of a pseudoarc is one. We need to prove \(\dim C(X) \neq 1 \).

Suppose \(\dim C(X) = 1 \). Since \(C(X) \) is contractible [R], any mapping on a subcontinuum of \(C(X) \) into \(S^1 \) is inessential, and therefore each subcontinuum of \(C(X) \) has property (b). Thus, each subcontinuum of \(C(X) \) is unicoherent [WH, p. 226]. But there are subcontinua of \(C(X) \) which are not unicoherent. For example, \(\mu^{-1}(0) \cup \mathcal{A}_{x,y} \), where \(\mathcal{A}_{x,y} \) is the unique arc in \(C(X) \) between \(\{ x \} \) and \(\{ y \} \), \(x \neq y \), \(x, y \in X \). Since a pseudoarc contains no arc, \(\mu^{-1}(0) \cap \mathcal{A}_{x,y} = \{ x, y \} \). Consequently, \(\dim C(X) \neq 1 \) and the theorem is proved.
THEOREM 3.2. If X is a pseudoarc then $C(X)$ has dimension two at the point X.

PROOF. The proof is by contradiction. Since $C(X)$ is a nondegenerate continuum, we have that the dimension of $C(X)$ at X is no less than one. We will show that the assumption that $C(X)$ is of dimension one at the point X implies $\dim C(X)=1$. The proof will be made in three parts.

Part 1. Let $0<t<1$. If $C(X)$ has dimension one at X then there are two disjoint open sets \mathcal{S} and \mathcal{T} of $C(X)$ such that $\mu^{-1}(0) \subset \mathcal{S}$, $\mu^{-1}[t, 1] \subset \mathcal{T}$, and their boundaries have $\dim \text{Bd}(\mathcal{S})=0=\dim \text{Bd}(\mathcal{T})$.

Let O be an open neighborhood of X such that $O \subset \mu^{-1}[\frac{1}{2}, 1]$ and $\dim \text{Bd}(O)=0$. Then, if \mathcal{S} is the complement of the closure of O, \mathcal{S} is an open set containing $\mu^{-1}(0)$ and $\dim \text{Bd}(\mathcal{S})=0$.

Let $P_0 \in O$ and $P_0 \neq X$. As Eberhart and Nadler in [EN] observed, Theorem 15 of [Bl] implies for each $A \in \mu^{-1}[t, 1]$, $A \neq X$, there exists a homeomorphism $h_A:C(X) \to C(X)$ such that $h_A(P_0)=A$. Associated with this homeomorphism are two disjoint open sets O_A and P_A for which $A \in O_A$, $\mu^{-1}(0) \subset P_A$, and $\dim \text{Bd}(O_A)=0=\dim \text{Bd}(P_A)$. Now, $\{O_A:A \in \mu^{-1}[t, 1], A \neq X\}$ is an open cover of the compact set $\mu^{-1}[t, 1]$. Let O_{A_1}, \ldots, O_{A_n} be a subcover, $\mathcal{T}=\bigcup_{i=1}^{n} O_{A_i}$ and $\mathcal{S}=\bigcap_{i=1}^{n} P_{A_i}$. Then \mathcal{S} and \mathcal{T} are disjoint open sets with $\mu^{-1}(0) \subset \mathcal{S}$ and $\mu^{-1}[t, 1] \subset \mathcal{T}$. Since $\text{Bd}(\mathcal{S}) \subset \bigcup_{i=1}^{n} \text{Bd}(P_{A_i})$ and $\text{Bd}(\mathcal{T}) \subset \bigcup_{i=1}^{n} \text{Bd}(O_{A_i})$, we have $\dim \text{Bd}(\mathcal{S})=0=\dim \text{Bd}(\mathcal{T})$ and the first part is proved.

Part 2. Let $0 \leq t \leq 1$ and O be an open neighborhood of $\mu^{-1}(t)$. Suppose the conclusion of Part 1 holds. Then there is an open neighborhood \mathcal{W} of $\mu^{-1}(t)$ such that $\mathcal{W} \subset O$ and $\dim \text{Bd}(\mathcal{W})=0$.

PROOF. By Lemma 2.3, there are two numbers s_1 and s_2 such that $s_1 < t < s_2$ and $\mu^{-1}[s_1, s_2] \subset O$. We assume for convenience that $0 < t < 1$. The contrary cases involve only a slight modification of the argument. We may now further assume $0 \leq s_1 < t < s_2 \leq 1$.

Let us consider s_1. By Lemma 2.2 there is a mapping $g_{s_1}:C(X) \to C(X)$ such that g_{s_1} maps $\mu^{-1}[s_1, 1]$ homeomorphically onto $C(X)$ and $g_{s_1}[\mu^{-1}(0), s_1]=\mu^{-1}(0)$. Hence by Lemma 2.3 there is a number T_1 with $0 < T_1$ such that $\mu^{-1}[0, T_1] \cap g_{s_1}[\mu^{-1}[t, 1]]=\emptyset$. From Part 1 there is an open set \mathcal{T} such that the closure of \mathcal{T} does not meet $\mu^{-1}(0), \mathcal{T} \supset \mu^{-1}[T_1, 1]$ and $\dim \text{Bd}(\mathcal{T})=0$. Thus, if $\mathcal{W}=g_{s_1}(\mathcal{T})$ then \mathcal{W} is open, $\mu^{-1}(t) \subset \mathcal{W}$, and $\dim \text{Bd}(\mathcal{W})=0$.

Next, consider t. By Lemma 2.2 there is a mapping $g_t:C(X) \to C(X)$ such that g_t maps $\mu^{-1}[t, 1]$ homeomorphically onto $C(X)$ and $g_t[\mu^{-1}[0, t]]=\mu^{-1}(0)$. Hence by Lemma 2.3 there is a number T_2 with $0 < T_2$ such that $g_t[\mu^{-1}[T_2, 1]]=\mu^{-1}(0)$ and $\dim \text{Bd}(\mathcal{W})=0$.
\[\mu^{-1}[0, T_2] \cap g_{r}([\mu^{-1}[s_2, 1]] = \emptyset. \] From Part 1, there is an open set \(\mathcal{S} \) such that the closure of \(\mathcal{S} \) does not meet \(\mu^{-1}[T_2, 1] \), \(\mathcal{S} \cap \mu^{-1}(0) = \emptyset \). Thus, if \(\mathcal{W}_2 = g_{t}^{-1}(\mathcal{S}) \) then \(\mathcal{W}_2 \) is open, \(\mu^{-1}(t) \subset \mathcal{W}_2 \subset \mu^{-1}[0, s_2] \) and \(\dim \text{Bd}(\mathcal{W}_2) = 0. \)

Let \(\mathcal{W} = \mathcal{W}_1 \cap \mathcal{W}_2. \) Then \(\mathcal{W} \) is open, \(\mu^{-1}(t) \subset \mathcal{W} \subset \mu^{-1}[s_1, s_2] \subset \emptyset \) and \(\dim \text{Bd}(\mathcal{W}) \leq \dim \text{Bd}(\mathcal{W}_1) + \dim \text{Bd}(\mathcal{W}_2) = 0. \) Thus Part 2 is proved.

Part 3. If \(C(X) \) has dimension one at \(X \) then \(\dim C(X) = 1. \)

Proof. Let \(\mathcal{N} = \{\mu^{-1}(t) : 0 \leq t \leq 1\} \). Then \(\mathcal{N} \) is a family of closed subsets of \(C(X) \). By Part 2, each neighborhood of \(\mu^{-1}(t) \) contains a neighborhood whose boundary has dimension zero. Since \(\dim \mu^{-1}(t) \leq 1 \) for each \(t \), we have, by Proposition 8 on p. 90 of [HW], \(\dim C(X) = \dim \bigcup \mathcal{N} \leq 1 \), a contradiction to Theorem 3.1. Thus Theorem 3.2 is proved.

4. Proof of the main theorem. We are now in a position to prove our main theorem. Lemma 2.3 provides us with the fact that the family \(\mu^{-1}[r, 1] \), \(0 \leq r < 1 \), forms a basis of closed neighborhoods of the point \(X \) in \(C(X) \). We infer from Lemma 2.1 that we need only consider the neighborhood \(C(X) \).

Theorem 4.1. If \(X \) is a pseudoarc then \(C(X) \) is a two-dimensional Cantor manifold.

Proof. By denying the conclusion, we will establish a contradiction to Theorem 3.2. That is, we will show that the existence of a zero-dimensional separator of \(C(X) \) implies the existence of an open neighborhood of \(X \), disjoint with \(\mu^{-1}(0) \), whose boundary has dimension zero. Then the preliminary remarks of this section will complete the proof.

Suppose \(\mathcal{P} \) is a closed zero-dimensional subset of \(C(X) \) which separates \(C(X) \). Let \(\mathcal{A} \) and \(\mathcal{B} \) be nonvoid open sets such that \(C(X) - \mathcal{P} = \mathcal{A} \cup \mathcal{B} \). We will consider two cases.

Case 1. Suppose \(X \notin \mathcal{P} \). Without loss of generality, we may assume \(X \in \mathcal{A} \). There are now two possibilities. Either \(\mathcal{P} \cap \mu^{-1}(0) = \emptyset \) or \(\mathcal{P} \cap \mu^{-1}(0) \neq \emptyset \). Let us dispose of the first possibility.

(a) *Suppose \(\mathcal{P} \cap \mu^{-1}(0) = \emptyset. \) In the event that \(\mu^{-1}(0) \subset \mathcal{B} \), the desired neighborhood of \(X \) is \(\mathcal{A} \) and the contradiction is established. Since \(\mu^{-1}(0) \) is connected, \(\mu^{-1}(0) \notin \mathcal{B} \) implies \(\mu^{-1}(0) \subset \mathcal{A} \). \(\mathcal{B} \) being nonvoid, choose \(P \in \mathcal{B} \). \(P \) is a nondegenerate subcontinuum of \(X \) since \(P \notin \mu^{-1}(0) \). Hence \(P \) is a pseudoarc. \(C(P) \) is homeomorphic to \(C(X) \) and \(C(P) \) is a subspace of \(C(X) \). Clearly, \(\mathcal{B} \cap C(P) \) is an open neighborhood of \(P \) in \(C(P) \), disjoint with \(C(P) \cap \mu^{-1}(0) = \{\{p\}: p \in P\} \), whose boundary in \(C(P) \) has dimension zero. Hence, the required neighborhood of \(X \) exists and the
contradiction is established. Thus, we have disposed of the possibility $\mathcal{S} \cap \mu^{-1}(0) = \emptyset$.

(b) Suppose $\mathcal{S} \cap \mu^{-1}(0) \neq \emptyset$. Either $B \cap \mu^{-1}(0) \neq \emptyset$ or $B \cap \mu^{-1}(0) = \emptyset$. Suppose first that $B \cap \mu^{-1}(0) \neq \emptyset$. Let $P_0 \in B \cap \mu^{-1}(0)$ and $A \in \mu^{-1}(0)$. Then, both P_0 and A are singleton subsets of X. Since X is homogeneous, there is a homeomorphism $h_A: C(X) \to C(X)$ such that $h_A(P_0) = A$. Associated with each such homeomorphism are two disjoint open sets $\mathcal{O}_A = h_A(\mathcal{A})$ and $\mathcal{P}_A = h_A(\mathcal{B})$ with the properties $X \in \mathcal{O}_A$ and $\dim \partial(\mathcal{O}_A) = 0$. Since $\{\mathcal{P}_A: A \in \mu^{-1}(0)\}$ is an open cover of the compact set $\mu^{-1}(0)$, there is a finite cover $\mathcal{P}_{A_1}, \ldots, \mathcal{P}_{A_n}$. Let $\mathcal{O} = \bigcap_{i=1}^n \mathcal{O}_{A_i}$ and $\mathcal{P} = \bigcup_{i=1}^n \mathcal{P}_{A_i}$. Then \mathcal{O} and \mathcal{P} are disjoint open sets, $X \in \mathcal{O}$, $\mu^{-1}(0) \subset \mathcal{P}$ and $\dim \partial(\mathcal{O}) = 0$. Thus, the desired neighborhood of X is found and the contradiction established.

Next, suppose $B \cap \mu^{-1}(0) = \emptyset$. Since $X \neq B$ and $B \neq \emptyset$, there is a non-degenerate subcontinuum $P \in B$. P is a pseudoarc and $C(P)$ is a subspace of $C(X)$ which is homeomorphic to $C(X)$. Since $\dim [C(P) \cap \mu^{-1}(0)] = 1$ and $\dim \mathcal{S} = 0$, we have $[C(P) \cap \mu^{-1}(0)] - \mathcal{S}$ is a nonempty subset of $\mathcal{A} \cap C(P)$. By considering $C(P)$, $\mathcal{S}' = C(P) \cap \mathcal{S}$, $\mathcal{A}' = B \cap C(P)$ and $\mathcal{B}' = \mathcal{A} \cap C(P)$, we see that \mathcal{S}' is a zero-dimensional separator of $C(P)$, $C(P) - \mathcal{S}' = \mathcal{A'} \cup \mathcal{B}'$ where \mathcal{A}' and \mathcal{B}' are open sets, $P \in \mathcal{A}'$ and $\mathcal{B}' \cap \mu^{-1}(0) \neq \emptyset$ where μ_P is a μ function associated with the pseudoarc P. We have arrived at the situation which immediately preceded the one at hand.

Now the two possibilities (a) and (b) under Case 1 have been completely disposed of.

Case 2. Suppose $X \in \mathcal{S}$. We will dispose of this case by reducing it to Case 1.

For each $x \in X$, there is a unique arc \mathcal{A}_x in $C(X)$ from $\{x\}$ to $X \setminus \{x\}$. Let $M = \{x \in X: \mathcal{A}_x \cap \mathcal{A} \neq \emptyset\}$ and $N = \{x \in X: \mathcal{A}_x \cap \mathcal{B} \neq \emptyset\}$. Since $\dim \mathcal{S} = 0$, we have $\emptyset \neq \mathcal{A}_x - \mathcal{S} \subset \mathcal{A} \cup \mathcal{B}$ for each $x \in X$. Consequently, $X = M \cup N$. We will show $M \neq \emptyset$ and open. A symmetric argument shows $N \neq \emptyset$ and open. To this end, we recall a continuous mapping $\Phi: X \times [0, 1] \to C(X)$ defined in Theorem 3.5 of [R]. Φ is defined as

$$\Phi(x, t) = A,$$

where $x \in A \in C(X)$ and $\mu(A) = t$.

Since each pair of points in $C(X)$ has a unique arc between them, we have $\mathcal{A}_x = \emptyset([x] \times [0, 1])$. Consequently, $M = F[\Phi^{-1}(\mathcal{A})]$, where F is the natural projection $F: X \times [0, 1] \to X$.

Since X is connected $M \cap N \neq \emptyset$. Let $x \in M \cap N$ and $P \in \mathcal{A}_x \cap \mathcal{A}$ and $Q \in \mathcal{A}_x \cap \mathcal{B}$. Since P and Q are in the arc \mathcal{A}_x, either $P \supseteq Q$ or $P \subseteq Q$. Also, $P \neq Q$. Suppose $P \supseteq Q$. By considering the pseudoarc P, we have for $C(P)$, $\mathcal{S}' = C(P) \cap \mathcal{S}$, $\mathcal{A}' = \mathcal{A} \cap C(P)$ and $\mathcal{B}' = B \cap C(P)$, precisely the Case 1. Similar considerations apply when $P \subseteq Q$.

The main theorem is now established.
BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, WAYNE STATE UNIVERSITY, DETROIT, MICHIGAN 48202