Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The hyperspace of a pseudoarc is a Cantor manifold


Authors: Togo Nishiura and Choon Jai Rhee
Journal: Proc. Amer. Math. Soc. 31 (1972), 550-556
DOI: https://doi.org/10.1090/S0002-9939-1972-0290337-4
MathSciNet review: 0290337
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: The following theorem which was conjectured by C. Eberhart and S. B. Nadler, Jr., in [EN] is proved.

Theorem. The hyperspace of nonvoid subcontinua of a pseudoarc is a two-dimensional Cantor manifold.


References [Enhancements On Off] (What's this?)

  • [B1] R. H. Bing, A homogeneous indecomposable plane continuum, Duke Math. J. 15 (1948), 729-742. MR 10, 261. MR 0027144 (10:261a)
  • [B2] -, Concerning hereditarily indecomposable continua, Pacific J. Math. 1 (1951), 43-51. MR 13, 265. MR 0043451 (13:265b)
  • [Dl] R. Duda, On the hyperspace of subcontinua of a finite graph. I, Fund. Math. 62 (1968), 265-286. MR 38 #5175a. MR 0236881 (38:5175a)
  • [D2] -, On the hyperspace of subcontinua of a finite graph. II, Fund. Math. 63 (1968), 225-255. MR 38 #5175b. MR 0236882 (38:5175b)
  • [D3] -, Correction to the paper ``On the hyperspace of subcontinua of a finite graph. I,'' Fund. Math. 69 (1970), 207-211. MR 0273575 (42:8453)
  • [EN] C. Eberhart and S. B. Nadler, Jr., The dimension of certain hyperspaces, Bull. Acad. Polon. Sci. (to appear).
  • [H] G. W. Henderson, On the hyperspace of subcontinua of arc-like continua, Proc. Amer. Math. Soc. 27 (1971), 416-417. MR 0273576 (42:8454)
  • [HW] W. Hurewicz and H. Wallman, Dimension theory, Princeton Math. Series, vol. 4, Princeton Univ. Press, Princeton, N.J., 1941. MR 3, 312. MR 0006493 (3:312b)
  • [KE] J. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36. MR 3, 315. MR 0006505 (3:315b)
  • [KU] K. Kuratowski, Topology. Vol. II, Academic Press, New York, 1968. MR 41 #4467. MR 0259835 (41:4467)
  • [N] S. B. Nadler, Jr., Inverse limits and multicoherence, Bull. Amer. Math. Soc. 76 (1970), 411-414. MR 40 #6514. MR 0253299 (40:6514)
  • [R] C. J. Rhee, On dimension of hyperspace of a metric continuum, Bull. Soc. Roy. Sci. Liège 38 (1969), 602-604. MR 0264620 (41:9212a)
  • [S] J. Segal, Hyperspaces of the inverse limit space, Proc. Amer. Math. Soc. 10 (1959), 706-709. MR 21 #7492. MR 0108780 (21:7492)
  • [T] W. R. Transue, On the hyperspace of subcontinua of the pseudoarc, Proc. Amer. Math. Soc. 18 (1967), 1074-1075. MR 36 #5901. MR 0222851 (36:5901)
  • [WH] H. Whitney, Analytic topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R.I., 1942.


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0290337-4
Keywords: Pseudoarc, hyperspace of continua, dimension, Cantor manifold
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society