Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A product theorem for $ H$-group fibrations


Author: F. H. Croom
Journal: Proc. Amer. Math. Soc. 31 (1972), 543-549
DOI: https://doi.org/10.1090/S0002-9939-1972-0290368-4
MathSciNet review: 0290368
Full-text PDF

Abstract | References | Additional Information

Abstract: Let ($ (E,p,B)$) and ($ (E',p',B)$) be $ H$-group fibrations over $ B$ with basic fibers $ F$ and $ F'$ respectively. If there are base point preserving fiber maps $ f:E \rightleftarrows E':g$ such that $ f$ is a fiber $ H$-homomorphism, then $ E \times F'$ and $ E' \times F$ have the same homotopy type.


References [Enhancements On Off] (What's this?)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0290368-4
Keywords: Weak covering homotopy property, $ H$-group, fiber homotopy equivalence, loop space
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society