Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The spectra of unbounded hyponormal operators


Author: C. R. Putnam
Journal: Proc. Amer. Math. Soc. 31 (1972), 458-464
MSC: Primary 47B20
DOI: https://doi.org/10.1090/S0002-9939-1972-0291848-8
MathSciNet review: 0291848
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A bounded operator $ T$ on a Hilbert space is said to be completely hyponormal if $ {T^\ast}T - T{T^\ast} \geqq 0$ and if $ T$ has no nontrivial reducing space on which it is normal. If 0 is in the spectrum of such an operator $ T$ and if the spectrum of $ T$ near 0 is not ``too dense,'' then the unbounded operator $ {T^{ - 1}}$ acts as though it were bounded. In particular, under certain conditions, $ {T^{ - 1}}$ has a rectangular representation with absolutely continuous real and imaginary parts whose spectra are the closures of the projections of the spectrum of $ {T^{ - 1}}$ onto the coordinate axes.


References [Enhancements On Off] (What's this?)

  • [1] K. F. Clancey, Spectral properties of semi-normal operators, Thesis, Purdue University, Lafayette, Ind., 1969.
  • [2] C. R. Putnam, On the spectra of semi-normal operators, Trans. Amer. Math. Soc. 119 (1965), 509-523. MR 32 #2913. MR 0185446 (32:2913)
  • [3] -, Commutation properties of Hilbert space operators and related topics, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 36, Springer-Verlag, New York, 1967. MR 36 #707. MR 0217618 (36:707)
  • [4] -, An inequality for the area of hyponormal operators, Math. Z. 116 (1970), 323-330. MR 0270193 (42:5085)
  • [5] C. R. Putnam, Unbounded inverses of hyponormal operators, Pacific J. Math. 35 (1970), 755-762. MR 0275214 (43:971)
  • [6] -, A similarity between hyponormal and normal spectra, Illinois J. Math. (to appear). MR 0326462 (48:4806)
  • [7] J. G. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc. 117 (1965), 469-476. MR 30 #3375. MR 0173161 (30:3375)
  • [8] -, Analytic extensions and spectral localization, J. Math. Mech. 16 (1966), 287-296. MR 33 #4687. MR 0196500 (33:4687)
  • [9] M. H. Stone, Linear transformations in Hilbert space and their applications to analysis, Amer. Math. Soc. Colloq. Publ., vol. 15, Amer. Math. Soc., Providence, R.I., 1932. MR 1451877 (99k:47001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B20

Retrieve articles in all journals with MSC: 47B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0291848-8
Keywords: Hyponormal operators, absolutely continuous operators
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society