Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on zero divisors in group-rings


Author: Jacques Lewin
Journal: Proc. Amer. Math. Soc. 31 (1972), 357-359
MSC: Primary 20C05
DOI: https://doi.org/10.1090/S0002-9939-1972-0292957-X
MathSciNet review: 0292957
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ Z{G_1}$ and $ Z{G_2}$ be the integral group rings of groups $ {G_1}$ and $ {G_2}$ with a common normal subgroup $ H$ and let $ K$ be a subgroup of $ H$. Let $ G$ be the free product of $ {G_1}$ and $ {G_2}$ amalgamating $ K$. If $ Z{G_1}$ and $ Z{G_2}$ are integral domains and if ZH has the Ore condition then ZG is again an integral domain.


References [Enhancements On Off] (What's this?)

  • [1] P. M. Cohn, On the free product of associative rings. III, J. Algebra 8 (1968), 376-383. MR 36 #5170. MR 0222118 (36:5170)
  • [2] A. V. Jategaonkar, Left principal ideal rings, Lecture Notes in Math., no. 123, Springer-Verlag, Berlin and New York, 1970. MR 0263850 (41:8449)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20C05

Retrieve articles in all journals with MSC: 20C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0292957-X
Keywords: Group-rings, zero divisors, free products
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society