ISOMETRIES OF H^p SPACES OF THE TORUS

NAND LAL1 AND SAMUEL MERRILL III2

Abstract. Denote by H^p ($1 \leq p \leq \infty$) the Banach spaces of complex-valued functions in L^p of the torus whose Fourier coefficients vanish off a half plane determined by a lexicographic ordering. The surjective isometries of the spaces H^p ($p \neq 2$) are characterized in terms of unimodular functions on the circle and conformal maps of the disc. For $1 < p < \infty$ ($p \neq 2$) the proof depends upon a characterization of certain invariant subspaces previously given by the authors.

Let A be the algebra of continuous complex-valued functions on $\{\lambda \in C: |\lambda| = 1\}$ which are uniform limits of polynomials in λ. Denote by $H^p(d\theta)$ the closure of A in $L^p(d\theta)$ where $d\theta$ denotes normalized Lebesgue measure on the circle (norm closure for $1 \leq p < \infty$; w^* closure for $p = \infty$). It is well known that the Banach spaces $H^p(d\theta)$ may be identified with the Hardy classes by associating with each function in $H^p(d\theta)$ its analytic extension to the open unit disc via the Poisson integral.

DeLeeuw, Rudin, and Wermer [1], and independently Nagasawa [6], characterized the surjective isometries of $H^\infty(d\theta)$ and $H^1(d\theta)$. Forelli [2] extended the characterization to $H^p(d\theta)$ for $1 < p < \infty$, $p \neq 2$. We state their results in Propositions 1 and 2.

Proposition 1. A linear operator T of $H^\infty(d\theta)$ onto $H^\infty(d\theta)$ is an isometry if and only if

\[(1) \quad (Tf)(\lambda) = \alpha f(\tau(\lambda)) \quad (f \in H^\infty(d\theta); \ |\lambda| = 1),\]

where α is a complex constant of modulus 1 and τ is a conformal map of the unit disc onto itself.
Proposition 2. Let $1 \leq p < \infty$, $p \neq 2$. A linear operator T of $H^p(\mathbb{D})$ onto $H^p(\mathbb{D})$ is an isometry if and only if

$$\tag{2} (Tf)(\lambda) = \alpha(\tau(\lambda))^{1/p} f(\tau(\lambda)) \quad (f \in H^p(\mathbb{D}); \, |\lambda| = 1),$$

where α and τ are as in Proposition 1.

We denote by $A(T^2)$ the algebra of continuous, complex-valued functions on the torus $T^2 = \{(z, w): |z| = |w| = 1\}$ which are uniform limits of polynomials in $z^m w^n$ where $(m, n) \in A = \{(m, n) : n > 0\} \cup \{(m, 0) : m \geq 0\}$. Denoting normalized Haar measure on T^2 by dm, we define H^p as the closure of $A(T^2)$ in $L^p(dm)$ (norm closure for $1 \leq p < \infty$; w^* closure for $p = \infty$). The purpose of this paper is to present characterizations of the isometries of H^p onto H^p for $1 \leq p \leq \infty$, $p \neq 2$.

H^p consists of those functions in $L^p(dm)$ whose double Fourier coefficients vanish off the half-plane \mathcal{S} which determines a lexicographic ordering. The maximal ideal space of $A(T^2)$ can be identified with $(\{z: |z| = 1\} \times \{w: |w| \leq 1\}) \cup (\{z: |z| \leq 1\} \times \{0\})$, with dm identified with $(z, w) = (0, 0)$. Since $A(T^2)$ is a logmodular algebra we have at our disposal the results of [4].

We denote by Z and W the functions $Z(z, w) = z$ and $W(z, w) = w$. The closure in $L^p(dm)$ of the polynomials in Z is denoted by Z^p; the closure of the polynomials in $Z^m W^n$, $n \geq 1$, by P; and finally the closure of the polynomials in Z and Z by L^p. By [5, Lemma 5, p. 467],

$$\tag{3} H^p = Z^p \oplus P$$

for $1 \leq p \leq \infty$, where \oplus denotes algebraic direct sum. A function f in H^p is inner if $|f| \equiv 1$; f is outer if $f \cdot A(T^2)$ is dense in H^p.

Theorem 1. A linear operator T of H^∞ onto H^∞ is an isometry if and only if

$$\tag{4} (Tf)(z, w) = \alpha f(\tau(z), w \sigma(z)) \quad (f \in H^\infty; \, |z| = |w| = 1),$$

where α is a complex constant of modulus 1, τ is a conformal map of the unit disc onto itself, and σ is a unimodular measurable function.

According to [1, Theorem 3, p. 695] it suffices to prove

Theorem 2. A linear operator Ψ of H^∞ onto H^∞ is an algebra automorphism if and only if

$$\tag{5} (\Psi f)(z, w) = f(\tau(z), w \sigma(z)) \quad (f \in H^\infty; \, |z| = |w| = 1),$$

where τ and σ are as in Theorem 1.
Lemma 1. If Ψ is an algebra automorphism of H^∞, then Ψ carries inner functions to inner functions, $\Psi Z^\infty = Z^\infty$, and $\Psi I^\infty = I^\infty$.

Proof. If F is inner but ΨF is not, then there exists $\epsilon > 0$ such that $m(K) > 0$ where $K = \{x : |\Psi F(x)| < 1 - \epsilon\}$. Choose $h \in H^\infty$ with $|h(x)| = 1$ on K and $|h(x)| = 1 - \epsilon$ on $T^2 \setminus K$ [4, Theorem 5.9, p. 297]. If $\Psi g = h$, $\|Fg\|_{\infty} = 1$ but $\|\Psi(Fg)\|_{\infty} = \|\Psi F\|_{\infty} \leq 1 - \epsilon$. Thus ΨF is inner.

Let M be the closure of ΨY in $L^2(dm)$. M is clearly invariant under multiplication by functions in H^∞ and also by Ψ where $V = \Psi Z$. For if $f \in I^\infty$, $fZ \in I^\infty$, so $\Psi f = \Psi(fZ) \Psi Z$ or $\Psi(fZ) = (\Psi f)(\Psi Z)$.

If M has the form FH^2 for some inner function F, then $F \circ \Psi M = FH^2$ so $\Psi \in H^2$. But $\Psi Z \in H^2$ so it is a constant. This contradicts the fact that Ψ is injective, so $M \subseteq I^1$ [4, p. 293]. It follows, using (3), that $\Psi I^\infty \subseteq I^\infty$.

Applying the same argument to the automorphism Ψ^{-1}, we conclude that $\Psi Y = Y$.

To show that $\Psi Z^\infty = Z^\infty$, it suffices to show that $\Psi Z \in Z^\infty$. Write $f = \Psi Z$ and suppose $f = f_1 + f_2$ where $f_1 \in Z^\infty$ and $f_2 \in I^\infty$. Then $I^\infty = \Psi(ZI^\infty) = I^\infty$, so $f_2 = fg$ for some $g \in I^\infty$. Thus $g = f_2 f_1 = (f - f_1) f_1 - f_1 f_1$, which is orthogonal to Z. Thus g and hence f_2 vanish.

Lemma 2. If $E_1 \in Z^\infty$ and $E_2 \in I^\infty$ are inner functions, and if for each Borel set $Y \subseteq T^1$, $m(Y) = m(X)$ where $X = \{(z, w) : (E_1(z), E_2(z, w)) \in Y\}$, then $\mu \ll m$.

Proof. The Fourier-Stieltjes coefficients of μ are $\hat{\mu}(m, n) = \int E_1^m E_2^n dm$. Thus $\hat{\mu}(m, 0) = a^m$ for $m \geq 0$ ($a = \int E_1 dm$). Since $E_2 \in I^\infty$, $\mu(m, n) = 0$ for $n \geq 1$. It follows that μ is the product measure $\mu = P dz \times dw = Q dm$, where $P(z) = (1 - |a|^2)/(|1 - az|^2$, dz and dw are each Lebesgue measure, and $Q \subseteq L^\infty(dm)$. In particular, if Y is m-null, then X is m-null. This argument is based on Forelli [2, p. 724].

Proof of Theorem 2. By Lemma 1, $\Psi W = W$. In fact $\Psi W = W\sigma$ for some $\sigma(z) = \sigma(z, w) \in L^\infty$, as can be shown by an argument similar to that by which we showed $\Psi Z \in Z^\infty$. Writing $\tau(z) = \tau(z, w) = (\Psi Z)(z, w)$, we see that τ is a conformal map of the disc by Proposition 1. Setting $E_1 = \tau$ and $E_2 = w\sigma$ in Lemma 2, we conclude that $f(\tau, w\sigma)$ is well defined for all measurable functions f. Thus (5) holds for all f in the algebra \mathcal{A} generated by $Z^n W^n$, $m, n \in \mathcal{S}$.

To establish (5) for all $f \in H^\infty$, it suffices to show that the automorphism $\Phi(f) = \Psi^{-1}(f(\tau, w\sigma))$ is the identity. We have seen that $\Phi Z = Z$ and $\Phi W = W$ and the proof of Proposition 1 shows that Φ is the identity on Z^∞. Thus it suffices to show that Φ is the identity on I^∞.

First we show that $\Phi(\chi_K W) = \chi_K W$ where χ_K is a characteristic function in L^∞. Since the function $\Phi(\chi_K W)/W$ is equal to its own square, it too is a characteristic function $\chi_K \in L^\infty$. There remains only to show that $K = K'$,
or in fact that \(K \subseteq K' \) since the argument also applies to \(\Phi^{-1} \). If not, there exists a nonzero continuous function \(f \in L^\infty \) with zero set \(K_1 \subseteq K/K' \) of positive measure. Then

\[
(6) \quad 0 = \Phi(fW)\Phi(\chi_{K_1}W) = fW\chi_{K_1'}W.
\]

Since \(K_1 \subseteq K \), \(K_1' \subseteq K' \), so \(f \) does not vanish on \(K_1' \). This contradicts (6).

Thus \(\Phi(\chi_KW) = \chi_KW \), and in general for \(g \in L^\infty \), \(\Phi(gW^n) = gW^n \) (\(n \geq 1 \)). If \(g \in L^\infty \), \(g = \sum_{i=1}^n g_iW^i + hW^n \) where \(g_i \in L^\infty \) and \(h \in L^\infty \). Since \(\Phi g = \sum_{i=1}^n g_iW^i + (\Phi h)W^n \) where \(\Phi h \in L^\infty \), the Fourier coefficients of \(g \) and \(\Phi g \) agree, so \(\Phi g = g \).

\textbf{Remark.} Using essentially the same argument we can show that the automorphisms of \(A(T^2) \) are also given by (5) except that here \(\sigma \) is continuous. However, this can more easily be done by considering the homeomorphisms of the maximal ideal space of \(A(T^2) \) induced by the automorphisms of the algebra.

\textbf{Theorem 3.} \(A \) linear operator \(T \) of \(H^p \) onto \(H^p \) (\(1 \leq p < \infty \), \(p \neq 2 \)) is an isometry if and only if

\[
(7) \quad (Tf)(z, w) = \alpha(\tau(z))^{1/p} \cdot f(\tau(z), w\sigma(z)),
\]

for all \(f \in H^p \), where \(|z| = |w| = 1 \), \(\alpha \) is a complex constant of modulus 1, \(\tau \) is a conformal map of the unit disc onto itself, and \(\sigma \) is a unimodular measurable function on the circle.

The proof depends on our results in [5] on the characterization of sesqui-invariant subspaces of \(H^p \). A closed subspace \(M \subseteq H^p \) is called \textit{invariant} if \(fM \subseteq M \) for all \(f \in H^\infty \). An invariant subspace \(M \subseteq H^p \) is called \textit{sesqui-invariant} if \(ZM \subseteq M \) and \textit{simply invariant} if this is not the case. If \(M \) is sesqui-invariant, it has the form

\[
M = \chi_E \cdot \psi \cdot I^p
\]

where \(\psi \) is unimodular and \(\chi_E \) is the characteristic function of the support set of \(M \) ([5, Theorem 3, p. 471]; see also [5, p. 473 for the torus case]). If \(M \) is simply invariant, it has the form \(M = \psi H^p \) (\(\psi \) unimodular) by the generalized Beurling theorem [8].

\textbf{Lemma 3.} \(\text{Let } F = T(1) \text{ and } E \text{ be the support set of } F. \text{ Then } m(E) = 1. \)

\textbf{Proof.} Since \(F \in H^p \), \(\chi_E \) is independent of \(w \), so \(G = w(1 - \chi_E) \in H^p \). Let \(g = T^{-1}(G) \). Thus

\[
\int |1 \pm g|^p \, dm = \int |F \pm G|^p \, dm
= \int |F|^p \, dm + \int |G|^p \, dm = 1 + \int |g|^p \, dm.
\]
Therefore
\[\int |1 + g|^p \, dm + \int |1 - g|^p \, dm = 2 \left[1 + \int |g|^p \, dm \right]. \]

By [7, p. 275], \(g = 0 \) a.e., so \(m(E) = 1 \).

Proof of Theorem 3. Lemma 3 insures that \(dv = |F|^p \, dm \) and \(dm \) are mutually absolutely continuous. Using Forelli's argument [2, Proposition 2, p. 723] it follows that \(Sf = TfF \) defines an isometry \(S \) of \(H^p \) into \(L^p(dv) \) which takes the algebra \(\mathcal{A} \) generated by \(Z^mW^n, (m, n) \in \mathcal{S} \), multiplicatively into \(L^\infty(dv) \). Write \(E_1 = S(Z) \) and \(E_2 = S(W) \). For \(f \in \mathcal{A} \), we have

\[Tf(z, w) = F \cdot f(E_1, E_2). \]

We show that \(E_1 \in L^\infty \) and \(E_2 \in L^\infty \). Since \(F \in H^p \), the sesqui-invariant subspace generated by \(F \) has the form \(JIp \), where \(J \) is unimodular. Thus \(F = JG \) where \(G \in Ip \) and the sesqui-invariant subspace generated by \(G \) is \(Ip \). For \(f \in S(\mathcal{A}) \), \(WF \in Ip \), and the property of \(G \) insures that \(W^2f \in Ip \). Thus the invariant subspace generated by \(S(\mathcal{A}) \) has the form \(\psi Ip \) or \(\psi H^p \), \(\psi \) unimodular.

In the first case \(f, W \in \psi Ip \), so \(f \in L^\infty \oplus Ip \) for all \(f \in S(\mathcal{A}) \) and similarly for the second case. In particular \(E_1 \in Ip \) and \(E_2 \in L^\infty \). The same argument applied to the algebra generated by \(Z^mW^n, n \geq 1 \), shows that \(E_1 \in L^\infty \oplus Ip \), so \(E_1 \in L^\infty \).

We conclude that \(F \notin Ip \) (otherwise \(T \) would map \(H^p \) onto \(Ip \)). Thus \(\int \log |F| \, dm > -\infty \), so \(F = JG \) where now \(J \) is inner and \(G \) is outer. Also \(\{ FE_n^m \}, m \geq 0 \), generate a simply invariant subspace, so by the usual argument \(E_1 \in Z^\infty \). Since \(G \) is outer, the invariant subspace \(N \) generated by \(\{ JE_1^mE_2^m \}, n > 0 \), is contained in \(H^p \). Since \(N = \psi H^p \) would imply that \(E_1 \in H^p \), we have \(N \subseteq Ip \) so \(JE_1 \in Ip \). \(J \in H^p \) but \(J \notin Ip \) (because \(F \notin Ip \)), so \(E_2 \in L^\infty \). Thus \(T \) takes \(Ip \) into \(Ip \).

Thus using Lemma 2, \(f(E_1, E_2) \) is well defined for all measurable functions \(f \). The density of \(\mathcal{A} \) in \(H^p \), \(1 \leq p < \infty \), insures that (8) holds for all \(f \in H^p \). Imitating Forelli's argument [2, p. 726] one shows that the function \(Q \) constructed in the proof of Lemma 2 satisfies

\[\int_X |F|^p \, dm = \int_X 1/Q(E_1) \, dm \]

for all Borel sets \(X \subseteq T^2 \). Since \(T \) is surjective, both \(T \) and \(T^{-1} \) carry \(Ip \) into \(Ip \), so that \(TT^p = Ip \). Again using the argument of [2] (beginning at the bottom of p. 726) it follows that \(E_1 \), considered as a function of \(z \) alone, is a.e. the boundary value function of a conformal map \(\tau_1 \) of the disc onto itself. Define \(\tau(z, w) = \tau_1(z) \). We have \(|\tau'| = 1/Q(\tau) \) and (9) becomes
for all Borel sets \(X \subseteq \mathbb{T}^2 \). Thus \(F \) and \((\tau')^{1/p} \) have the same modulus. Since the latter is outer, we can show that they differ by a constant of modulus one by showing \(F \) is outer. If \(F = JG, J \) inner and \(G \) outer, then \(GH^p = H^p = TH^p = Fh^p \). Dividing by \(G \), \(H^p = Jh^p \), so \(J \equiv 1, |z| = 1 \).

To complete the proof it suffices to show that \(E_\sigma = W\sigma \) where \(\sigma \in L^\infty \). For this we need to show that \(\sigma h^p = l^p \) (see the analogous argument for \(p = \infty \)). But since \(F \) and \(1/F \) are bounded, \(\sigma h^p = \overline{W}(SW)(Sl^p) = \overline{W}(SL^p) = l^p \).

For the case \(p = 1 \), Theorem 3 can also be obtained by adapting the original argument of deLeeuw, Rudin and Wermer [1, Theorem 2, p. 694] in which they deduce the isometries of \(H^1(d\theta) \) by exploiting the special properties of the extreme points of the unit ball of \(H^1(d\theta) \). To do this one needs three facts about functions on the torus: (a) the extreme points of the unit ball of \(H^1 \) are the outer functions of norm one (Gamelin [3]), (b) the identity \(\int f dm = \int (f, \overline{\omega}) \eta^\prime dm \) (a straightforward calculation), and (c) the result of Lemma 4 below. Let \(B^e \) be the set of extreme points in the unit ball of \(H^1 \), \(P(m) = \{z: |z| < 1\} \times \{0\} \), and \(D_z = \{z\} \times \{w: |w| < 1\} \) for each \(|z| = 1 \).

Lemma 4. A function \(f \in H^1 \) of norm 1 lies in the closure of \(B^e \) if and only if
\[
(10) \quad \text{\(f \) has no zeros on \(P(m) \) and \(\hat{f} \) has no zeros on \(D_z \) for almost all \(z \).}
\]

Proof. If \(f \) lies in the closure of \(B^e \), then there exist \(f_n \in B^e \) converging uniformly on compact sets to \(f \) on \(P(m) \) and on each \(D_z \) for almost all \(z \). (10) follows.

Conversely suppose (10) holds. Define \(f_r(z, w) = f(z, rw), 0 < r < 1 \). Let \(f_{r_*} = F_r g_r, F_r \) inner, \(g_r \) outer. One shows that \(F_r \) is independent of \(r \), say \(F_r = F \in \mathbb{Z}^\infty \). Let \(h_r(z, w) = F(rz) \). Then \(f \) is the \(L^1 \) limit of the outer functions \(h_r g_r \), so \(f \) lies in the closure of \(B^e \).

References

Department of Mathematics, North Texas State University, Denton, Texas 76201

Department of Mathematics, University of Rochester, Rochester, New York 14627