Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Representations of Euler classes

Author: Howard Osborn
Journal: Proc. Amer. Math. Soc. 31 (1972), 340-346
MSC: Primary 57D20; Secondary 13C99
MathSciNet review: 0300303
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For any endomorphism $ K$ of an oriented module $ F$ with inner product there is an element $ {\text{pf }}K$ in the ground ring $ R$, a constant multiple of the classical pfaffian in the case $ F = {R^{2n}}$. If $ R$ is the algebra of even-dimensional differential forms on a smooth manifold, and if $ F$ is the tensor product of $ R$ and the module of sections of an oriented $ 2n$-plane bundle, then any connection in the bundle induces a curvature transformation $ K:F \to F$ for which $ {(4\pi )^{ - n}}{\text{pf }}K$ represents the Euler class. Properties of Euler classes are immediate consequences of corresponding properties of $ {\text{pf}}$.

References [Enhancements On Off] (What's this?)

  • [1] A. Avez, Formule de Gauss-Bonnet-Chern en métrique de signature quelconque, C. R. Acad. Sci. Paris 255 (1962), 2049-2051; Rev. Un. Mat. Argentina 21 (1963), 191-197. MR 26 #2993; 29 #6452. MR 0169199 (29:6452)
  • [2] A. Borel, Sur une généralisation de la formule de Gauss-Bonnet, An. Acad. Brasil. Ci. 39 (1967), 31-37. MR 36 #5866. MR 0222816 (36:5866)
  • [3] S. S. Chern, Pseudo-Riemannian geometry and the Gauss-Bonnet formula, An. Acad. Brasil. Ci. 35 (1963), 17-26. MR 27 #5196. MR 0155261 (27:5196)
  • [4] H. Flanders, On free exterior powers, Trans. Amer. Math. Soc. 145 (1969), 357-367. MR 40 #2662. MR 0249417 (40:2662)
  • [5] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. II, Interscience Tracts in Pure and Appl. Math., no. 15, Interscience, New York, 1969. MR 38 #6501. MR 0238225 (38:6501)
  • [6] H. Osborn, Differential geometry in PL (to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57D20, 13C99

Retrieve articles in all journals with MSC: 57D20, 13C99

Additional Information

Keywords: Pfaffians, Hodge operator, connections, curvature transformations, Euler classes, Avez-Chern theorem, Gauss-Bonnet theorem
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society