EQUIVALENT TYPES OF INVARIANT MEANS ON LOCALLY COMPACT GROUPS

P. F. RENAUD

Abstract. For G a locally compact amenable group, we establish the equivalence of left invariant means and topologically left invariant means on $L^\infty(G)$.

1. Introduction and notation. Let G be a locally compact group with left Haar measure μ. Let $L^1(G)$ and $L^\infty(G)$ denote the usual Banach function spaces on G. $L^1(G)$ is a Banach \ast-algebra under the convolution operation

$$x \ast y(g) = \int x(h)y(h^{-1}g) \, d\mu(h)$$

and the adjoint map

$$x^\ast(g) = \Delta(g^{-1})x(g^{-1})$$

where Δ is the modular function on G. A weight on G is a nonnegative function $x \in L^1(G)$ such that $\int x(g) \, d\mu(g) = 1$. Denote by P the set of all weights on G and observe that P is a semigroup under convolution. For f a complex-valued function on G, define $\phi_f(g) \in G$ by $\phi_f(h) = f(g^{-1}h)$.

A linear functional m on $L^\infty(G)$ is called a mean if

(i) $m(f) \geq 0$ for all $f \in L^\infty(G)$, $f \geq 0$ and

(ii) $m(1) = 1$ where 1 denotes the identity function.

Clearly every weight x in P defines a mean on $L^\infty(G)$ via $m(x) = \int x(g) f(g) \, d\mu(g)$.

Let m be a mean on $L^\infty(G)$. m is called a left invariant mean (LIM) if

$$m_x(f) = m(f) \quad \text{for all } f \in L^\infty(G), \, g \in G.$$

m is called a topologically left invariant mean (TLIM) if

$$m(x \ast f) = m(f) \quad \text{for all } f \in L^\infty(G), \, x \in P,$$

or equivalently

$$m(x \ast f) = m(f) \int x(g) \, d\mu(g) \quad \text{for all } f \in L^\infty(G), \, x \in L^1(G).$$

Received by the editors March 10, 1971.

AMS 1970 subject classifications. Primary 43A07; Secondary 22D15, 43A15.

Key words and phrases. Locally compact group, amenable group, invariant means.

© American Mathematical Society 1972

495
G is called amenable if there exists a \(L^\infty(G) \). TLIM's were introduced by Hulanicki [4] as a natural extension of LIM's to non-discrete groups. Among other results he proved that every TLIM is also a LIM. Subsequently, Namioka [5] showed that the existence of a LIM implies the existence of a TLIM. The purpose of this note is to show that in fact every LIM is also a TLIM. This answers a question raised by Greenleaf (see [3, Lemma 2.2.2 and remarks]).

2. Equivalence of LIM's and TLIM's. We shall now prove the following

Theorem. Let \(G \) be an amenable group, \(m \) a LIM on \(L^\infty(G) \). Then \(m \) is a TLIM.

For \(f \in L^\infty(G) \) and \(x \in L^1(G) \), left invariance of \(m \) gives

\[
m((\varphi \ast g) \ast f) = m((\varphi \ast f)) = m(\varphi \ast f) \quad \text{for all } g \in G.
\]

Hence \(x \to m(\varphi \ast f) \) is a left invariant bounded linear functional on \(L^1(G) \) so that there exists a constant \(k(f) \) such that

\[
m(\varphi \ast f) = k(f) \int x(g) \, d\mu(g) \quad \text{for all } x \in L^1(G).
\]

It is immediate that \(k \) is a mean on \(L^\infty(G) \). Further if \(x \in \mathcal{P} \) then \(x \ast x \in \mathcal{P} \) so that

\[
k(x \ast f) = m(x \ast (x \ast f)) = m((x \ast x) \ast f) = k(f)
\]

and \(k \) is a TLIM. The theorem will be proved if we show that \(m = k \).

Fix \(f \in L^\infty(G) \). Choose a net \(\{x_\gamma\}_{\gamma \in \Omega} \subseteq \mathcal{P} \) such that \(w^* \lim \gamma x_\gamma = m \) and define \(F_\gamma \) on \(G \) by \(F_\gamma(g) = \langle \varphi, x_\gamma, f \rangle \). Left invariance of \(m \) means that \(F_\gamma \to m(\varphi) \) pointwise on \(G \). The theorem will follow from the following

Lemma. \(F_\gamma \to m(\varphi) \) almost uniformly on every compact subset of \(G \).

Proof. If we were dealing with sequences rather than nets, then the lemma would be a trivial application of Egoroff's theorem. With nets, however, a little delicacy is required.

Let \(K \) be a compact set with \(\mu(K) > 0 \). For \(k \) a positive integer, \(\gamma \in \Omega \), define

\[
E_{k, \gamma} = \bigcap_{\gamma' \geq \gamma} \{ g \in K : |F_{\gamma'}(g) - m(\varphi)| \leq 1/k \}.
\]

Since \(F_\gamma \) is continuous, \(E_{k, \gamma} \) is a compact subset of \(K \). Note that for fixed \(k \), \(\{E_{k, \gamma}\} \) is an increasing net (in the sense that \(\gamma \geq \gamma' \Rightarrow E_{k, \gamma} \supseteq E_{k, \gamma'} \)) with \(\bigcup_{\gamma} E_{k, \gamma} = K \). Let \(\chi_K, \chi_{E_{k, \gamma}} \) be the characteristic functions of \(K \) and \(E_{k, \gamma} \), respectively. We then have that \(\{\chi_{E_{k, \gamma}}\} \) is a bounded monotone increasing net in \(L^\infty(G) \) for each \(k \) and \(\chi_K = \sup_{\gamma} \chi_{E_{k, \gamma}} \). Now \(L^\infty(K) \) may be regarded
as a W^*-algebra on the Hilbert space $L^2(K)$. The predual of $L^\infty(K)$ is $L^1(K)$ so that every nonnegative element in $L^1(K)$ is a normal positive linear functional on $L^\infty(K)$ [1, Chapitre 1, §§3 and 4]. Hence $\langle \chi_K, \chi_K \rangle = \sup_\gamma \langle \chi_K, \chi_{E_{k, \gamma}} \rangle$ or,
\[
\lim_{\gamma} \mu(E_{k, \gamma}) = \mu(K) \quad \text{for each } k.
\]
Fix $\varepsilon > 0$. For each k, choose γ_k such that $\mu(K \setminus E_{k, \gamma_k}) < \varepsilon/2^k$ and let $E_0 = \bigcap_k E_{k, \gamma_k}$. E_0 is a compact set and
\[
\mu(K \setminus E_0) = \mu\left(\bigcup_k K \setminus E_{k, \gamma_k} \right) \leq \sum_k \mu(K \setminus E_{k, \gamma_k}) < \varepsilon.
\]
Finally it is clear that $F_\gamma \to m(f)$ uniformly on E_0.

It should be noted that the above theorem resembles somewhat the condition (FC*) of [2]. Using a technique similar to the one employed in the proof of Lemma 1.4.3 of [2], we could show directly that the above lemma implies that $F_\gamma \to m(f)$ uniformly on all compact sets.

Proof of Theorem. By the above lemma we can find a compact set E with $\mu(E) > 0$ such that $F_\gamma \to m(f)$ uniformly on E. Therefore
\[
\lim_{\gamma} \int_E F_\gamma(g) \, d\mu(g) = m(f)\mu(E).
\]
But
\[
\int_E F_\gamma(g) \, d\mu(g) = \int_G \chi_E(g) \left[\int_G x_\gamma(g^{-1}h)f(h) \, d\mu(h) \right] \, d\mu(g)
\]
\[
= \int_G (\chi_E * x_\gamma)(h)f(h) \, d\mu(h)
\]
\[
= \langle \chi_E * x_\gamma, f \rangle = \langle x_\gamma, \chi_E^* * f \rangle
\]
so that $\lim_{\gamma} \int_E F_\gamma(g) \, d\mu(g) = m(\chi_E^* * f)$. Hence
\[
m(f)\mu(E) = m(\chi_E^* * f)
\]
\[
= k(f) \int \chi_{E_0}^*(g) \, d\mu(g) = k(f)\mu(E).
\]
Therefore $m(f) = k(f)$ and f being arbitrary, $m = k$. Hence m is a TLIM.

The notion of LIM and TLIM may be applied to $CB(G)$—the space of bounded continuous functions on G. The method above may be applied here to show that on $CB(G)$ every LIM is again a TLIM.

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CANTERBURY, CHRISTCHURCH, NEW ZEALAND