MULTIPLIER OPERATORS ON B^*-ALGEBRAS

B. D. MALVIYA AND B. J. TOMIUK

Abstract. The purpose of this paper is to give a characterization of the dual B^*-algebra and the algebra of bounded linear operators on Hilbert space in terms of their multipliers.

1. All algebras and vector spaces under consideration are over the complex field \mathbb{C}. If A is a Banach algebra, A^* will denote the first conjugate space and A^{**} the second conjugate space of A. For any Hilbert space H, $L(H)$ will denote the algebra of continuous linear operators on H.

Let A be a B^*-algebra. Following Máté [5], we call a bounded linear operator T mapping A into itself a multiplier if $T(xy) = x(Ty)$ for all $x, y \in A$. The set $M(A)$ of all multipliers on A is a Banach algebra. For every $a \in A$, the right multiplication operator T_a is a multiplier on A, $I_A = \{T_a: a \in A\}$ is a closed left ideal of $M(A)$ and the mapping $a \mapsto T_a$ is an isometric anti-isomorphism of A onto I_A.

From [3, p. 869, Theorem 7.1] it follows that if A is a B^*-algebra then the two Arens products defined on A^{**} coincide. For later use we sketch one of the Arens products. We do this in stages as follows [1], [3]: Let $x, y \in A$, $f \in A^*$, $F, G \in A^{**}$.

(i) Define $f \circ x$ by $(f \circ x)y = f(xy); f \circ x \in A^*$.

(ii) Define $G \circ f$ by $(G \circ f)x = G(f \circ x); G \circ f \in A^*$.

(iii) Define $F \circ G$ by $(F \circ G)f = F(G \circ f); F \circ G \in A^{**}$.

For any Hilbert space H, $L_C(H)$ will denote the subalgebra of $L(H)$ consisting of compact operators and $\tau_C(H)$ the subalgebra of trace class operators on H. We shall denote the trace function of $\tau_C(H)$ by $\text{tr}()$ and the trace norm by $\tau(); \tau(T) = \text{tr}((T^*T)^{1/2})$ for all $T \in \tau_C(H)$. As a Banach space $\tau_C(H)$ can be identified with the conjugate space of $L_C(H)$ in the following way: For each continuous linear functional f on $L_C(H)$ there exists a unique T in $\tau_C(H)$ such that $f(S) = \text{tr}(ST)$ for $S \in L_C(H)$ and $\|f\| = \tau(T)$ [7, p. 46, Theorem 1]. Similarly, the conjugate space of $\tau_C(H)$ can be identified (isometrically) with $L(H)$ [7, p. 47, Theorem 2].
Thus the second conjugate space of $LC(H)$ is isometrically isomorphic to $L(H)$. In fact, it can be shown that this isomorphism is actually a $*$-isomorphism when the second conjugate space of $LC(H)$ is given the Arens product.

Let $\{A_\lambda : \lambda \in \Lambda \}$ be a family of Banach algebras. Let $\sum A_\lambda$ be the set of all functions on Λ with $f(\lambda) \in A_\lambda$, for each λ, and such that $\|f\| = \sup_\lambda \|f(\lambda)\| < \infty$. Then under the usual operations for functions and the norm $\|f\|$, $\sum A_\lambda$ is a Banach algebra. It is called the normed full direct sum of the algebras A_λ [6, p. 77]. Let $(\sum A_\lambda)_0$ be the subset of $\sum A_\lambda$ consisting of all f such that, for every $\epsilon > 0$, the set $\{\lambda: \|f(\lambda)\| \geq \epsilon\}$ is finite. Then $(\sum A_\lambda)_0$ is a closed subalgebra of $\sum A_\lambda$ [6, p. 107].

For any set S in a Banach algebra A, let $l(S)$ and $r(S)$ be the left and right annihilators of S, respectively. A is called dual if $l(r(J)) = J$ and $r(l(R)) = R$ for every closed left ideal J and every closed right ideal R of A. As usual $cl(S)$ will denote the closure of S in A.

2. We devote this section to several lemmas which will be useful to us in §3.

Lemma 2.1. To each multiplier T on the algebra $LC(H)$ there corresponds a unique element a_T in $L(H)$ such that $T(s) = sa_T$ for all $s \in LC(H)$; $\|T\| = \|a_T\|$. Thus the mapping $T \rightarrow a_T$ is an isometric anti-isomorphism of $M(LC(H))$ onto $L(H)$.

Proof. Let $A = LC(H)$ and let $T \in M(A)$. Since A has an approximate identity, by [5, p. 810, Theorem 1], there exists a unique element F in A^{**} such that

$$
(F \circ f)s = f(T(s)) \quad (s \in A, f \in A^*) \quad (1)
$$

For $s \in A$ and $f \in A^*$, let t_f and t_{f_s} be the elements of $\tau c(H)$ such that $f(a) = tr(at_f)$ and $(f \circ s)(a) = tr(at_{f_s})$ for all $a \in A$. (See [7, p. 46, Theorem 1].) Since

$$
tr(t_{f_s}a) = f(sa) = (f \circ s)a = tr(t_{f_s}a) \quad (a \in A),
$$

[7, p. 45, Lemma 1] shows that

$$
t_{f_s} = t_f \quad (s \in A, f \in A^*) \quad (2)
$$

Thus

$$
(F \circ f)s = F(f \circ s) = tr(t_{f_s}t_F) = tr(t_{f_s}t_F) \quad (s \in A, f \in A^*) \quad (3)
$$

where t_F is the unique element in $L(H)$ such that $F(f) = tr(t_F)$ for all $f \in A^*$. (See [7, p. 47, Theorem 2].) But $f(T(s)) = tr(t_F(T(s)))$. Hence from (1) and (3) it follows that

$$
f(T(s)) = tr(t_F(T(s)) \quad (f \in A^*).$$
Recalling [7, p. 45, Lemma 1], we see that \(T(s) = st_F \) for all \(s \in A \). Taking \(a_T = t_F \) completes the proof.

Corollary 2.2. Let \(A = L^C(H) \). Then there exists an isometric anti-isomorphism \(\phi \) of \(M(A) \) onto \(A^{**} \) such that \(\phi(I_A) = \pi(A) \), where \(\pi(A) \) is the canonical image of \(A \) in \(A^{**} \).

Proof. For each \(a \in A \), the right multiplication operator \(T_a \) is a multiplier on \(A \). Hence by Lemma 2.1, there exists \(b \in L(H) \) such that \(T_a x = xb \) for all \(x \in A \). This means that \(xa = xb \), for all \(x \in A \), which clearly implies that \(a = b \). Let \(\phi_1 \) be the mapping \(T \to a_T \) of \(M(A) \) onto \(L(H) \) given in Lemma 2.1, and let \(\phi_2 \) be the mapping \(a \to F_a \) which identifies \(L(H) \) with \(A^{**} \); \(\phi_2 \) is an isometric *-isomorphism of \(L(H) \) onto \(A^{**} \). Let \(\phi \) be the composite map \(\phi = \phi_2 \circ \phi_1 \). Then \(\phi \) is an isometric anti-isomorphism of \(M(A) \) onto \(A^{**} \) such that \(\phi(I_A) = \pi(A) \).

The following lemma is easy to prove and we state it mainly for convenience.

Lemma 2.3. Let \(\{A_x : \lambda \in \Lambda \} \) be a family of semisimple Banach algebras and let \(A = (\bigoplus A_x)_c \). For each \(\lambda \in \Lambda \), let \(I_\lambda = \{ f \in A : f(\mu) = 0 \text{ if } \mu \neq \lambda \} \) and \(B_\lambda = \{ f \in A : f(\lambda) = 0 \} \). Then

(i) \(I_\lambda \cap B_\lambda = (0) \) and \(I_\lambda + B_\lambda = A \).

(ii) \(l(I_\lambda) = r(I_\lambda) = B_\lambda \) and \(l(B_\lambda) = r(B_\lambda) = I_\lambda \).

Lemma 2.4. Let \(A, I_x, \) and \(B_x \) be as in Lemma 2.3. Let \(T \in M(A) \). Then

(i) \(T \) leaves each \(I_x \) invariant, i.e., \(T(I_x) \subseteq I_x \).

(ii) If \(T_x \) denotes the restriction of \(T \) to \(I_x \), then

\[
\| T \| = \sup_{\lambda} \| T_{I_x} \|.
\]

Proof. (i) Let \(x \in B_\lambda \) and \(y \in I_\lambda \). Then \(0 = T(xy) = xTy \) which shows that \(T \in r(B_\lambda)_c I_\lambda \) by Lemma 2.3. Hence \(T(I_\lambda) \subseteq I_\lambda \).

(ii) Clearly \(\| T_{I_\lambda} \| \leq \| T \| \) for all \(\lambda \). Let \(\epsilon > 0 \) be given. Then there exists \(f \in A \), \(\| f \| = 1 \), such that \(\| T \| - \epsilon \leq \| Tf \| \). Since \(A = (\bigoplus A_x)_c \), there exists \(\lambda_1, \lambda_2, \ldots, \lambda_n \) such that \(\| f(\lambda_i) \| \leq \| T \| \) and \(\| f(\lambda) \| < \epsilon \) for \(\lambda \neq \lambda_i \) (\(i = 1, 2, \ldots, n \)). Let \(g \in A \) be such that \(g(\lambda_i) = f(\lambda_i) \) and \(g(\lambda) = 0 \) for \(\lambda \neq \lambda_i \) (\(i = 1, 2, \ldots, n \)). Then \(\| f \| = \| g \| \) and

\[
\| Tg \| = \sup_{1 \leq i \leq n} \| T_{I_x} (g(\lambda_i)) \|,
\]

so that \(\| Tg \| = \| T_{I_x} (g(\lambda_{i_0})) \| \) for some \(i_0 \), \(1 \leq i_0 \leq n \). Since \(\| T_{I_x} (g(\lambda_{i_0})) \| \leq \| T_{I_x} \| \) for \(1 \leq i_0 \leq n \), we have \(\| T \| - \epsilon \leq \| T_{I_x} \| \). Hence \(\| T \| = \| T \| - \epsilon \leq \| T_{I_x} \| \).

Lemma 2.5. Let \(\{A_x : \lambda \in \Lambda \} \) be a family of semisimple Banach algebras and let \(A = (\bigoplus A_x)_c \). Then \(M(A) \) is isometrically isomorphic to the normed full direct sum of the algebras \(M(A_x) \).
Proof. For each $\lambda \in \Lambda$, let $I_\lambda = \{ f \in A : f(\mu) = 0 \text{ if } \mu \neq \lambda \}$ and, for each $T \in M(A)$, let T_λ be the restriction of T to I_λ; T_λ is a multiplier on I_λ. Since A_λ is isometrically isomorphic to I_λ, each T_λ may be identified as an element of $M(A_\lambda)$ with the same norm. For $T \in M(A)$, let \mathcal{T}_T be the function on Λ such that $\mathcal{T}_T(\lambda) = T_\lambda$. By Lemma 2.4, \mathcal{T}_T is an element of the normed full direct sum $\sum M(A_\lambda)$ with $\| \mathcal{T}_T \| = \| T \|$. Hence $T \mapsto \mathcal{T}_T$ is an isometric isomorphism of $M(A)$ into $\sum M(A_\lambda)$. To show that this mapping is onto, let $\mathcal{T} \in \sum M(A_\lambda)$ and let T be the mapping on A such that $(Tf)(\lambda) = \mathcal{T}(\lambda)f(\lambda)$. It is easy to see that T is a multiplier on A with $\| T \| = \| \mathcal{T} \|$. Thus $T \mapsto \mathcal{T}_T$ is onto and this completes the proof.

Corollary 2.6. Let A be a dual B^*-algebra and let $\{ I_\lambda : \lambda \in \Lambda \}$ be the family of all minimal closed two-sided ideals of A. For each $T \in M(A)$ and $\lambda \in \Lambda$, let T_λ be the restriction of T to I_λ. Let $M_\lambda = \{ T_\lambda : T \in M(A) \}$. Then $M(A)$ is isometrically isomorphic to the normed full direct sum of the algebras M_λ.

Proof. By [6, p. 267, Theorem (4.10.14)], $A = (\sum I_\lambda)_0$ and so, by Lemma 2.5, $M(A)$ is isometrically isomorphic to the normed full direct sum $\sum M(I_\lambda)$. Now, since $I_\lambda \cap r(I_\lambda) = (0)$ and $I_\lambda + r(I_\lambda) = A$, it is easy to show that $M_\lambda = M(I_\lambda)$. Hence $M(A)$ is isometrically isomorphic to $\sum M_\lambda$.

3. We are now ready to prove the characterizations mentioned in the abstract.

Theorem 3.1. Let A be a B^*-algebra, A^{**} its second conjugate space and $\pi(A)$ the canonical image of A in A^{**}. Give A^{**} the Arens product. Then A is a dual algebra if and only if there exists an isometric anti-isomorphism ϕ of $M(A)$ onto A^{**} such that $\phi(IA) = \pi(A)$.

Proof. Suppose that A is dual. Then there exists a family of Hilbert spaces $\{ H_\lambda : \lambda \in \Lambda \}$ such that A is \ast-isomorphic to $(\sum LC(H_\lambda))_0$ [4, p. 221, Lemma 2.3]. It now follows that A^\ast is isometrically isomorphic to $(\sum \tau c(H_\lambda))_1$, the L_1-direct sum of the algebras $\tau c(H_\lambda)_1$, and that in turn A^{**} is isometrically isomorphic to the normed full direct sum $\sum L(H_\lambda)$ of the algebras $L(H_\lambda)$ [8, p. 532]. Letting $LC(H_\lambda) = A_\lambda$ and identifying A with $(\sum A_\lambda)_0$, Lemma 2.5 shows that $M(A)$ is isometrically isomorphic to the normed full direct sum of the algebras $M(A_\lambda)$. But, by Corollary 2.2, $M(A_\lambda)$ is isometrically anti-isomorphic to $L(H_\lambda)$, for each $\lambda \in \Lambda$. Hence $M(A)$ is isometrically anti-isomorphic to $\sum L(H_\lambda)$. Since $\sum L(H_\lambda)$ is \ast-isomorphic to A^{**}, it follows that $M(A)$ is isometrically anti-isomorphic to A^{**}. Let ϕ be this anti-isomorphism. It is now easy to deduce from Corollary 2.2 that $\phi(I_A) = \pi(A)$.

Conversely, suppose that there exists an isometric anti-isomorphism of $M(A)$ onto A^{**} such that $\phi(I_A) = \pi(A)$. Since I_A is a closed left ideal
of \(M(A) \), it follows that \(\pi(A) \) is a closed right ideal of \(A^{**} \). But \(\pi(A) \) is a *-subalgebra of \(A^{**} \). Hence \(\pi(A) \) is a closed two-sided ideal of \(A^{**} \). Therefore, by [8, p. 533, Theorem 5.1], \(A \) is dual. This completes the proof.

As an immediate consequence of the proof of Theorem 3.1, we have:

Corollary 3.2. A \(B^* \)-algebra \(A \) is dual if and only if every multiplier on \(\pi(A) \) is given by the restriction to \(\pi(A) \) of the right multiplication operator \(T_a \), for some \(a \in A^{**} \).

Theorem 3.3. Let \(A \) be a \(B^* \)-algebra with minimal left ideals. Let \(I \) be a minimal left ideal of \(A \), \([I] \) the closed two-sided ideal generated by \(I \). Then \(A \) is *-isomorphic to \(L(H) \), for some Hilbert space \(H \), if and only if \(M([I]) \) is isometrically anti-isomorphic to \(A \).

Proof. Suppose \(A \) is *-isomorphic to \(L(H) \). Then the closed two-sided ideal generated by any minimal left ideal \(I \) of \(A \) is *-isomorphic to \(LC(H) \) and, by Corollary 2.2, \(M(LC(H)) \) is isometrically anti-isomorphic to \(L(H) \).

Conversely suppose that \(M([I]) \) is isometrically anti-isomorphic to \(A \). Let \(B \) be the closure of the socle of \(A \). Then \(B \) is a nonzero dual \(B^* \)-algebra and every minimal left ideal of \(A \) is also a minimal left ideal of \(B \). Hence, by [2, p. 158, Theorem 5], \([I] \) is a minimal closed two-sided ideal of \(B \) and therefore is *-isomorphic to \(LC(H) \), for some Hilbert space \(H \). Hence, by Lemma 2.1, \(A \) is isometrically isomorphic to \(L(H) \). [6, p. 248, Corollary (4.8.19)] now completes the proof.

Corollary 3.4. Let \(A \) be a \(B^* \)-algebra containing minimal left ideals. Let \(I \) be a minimal left ideal of \(A \) and \([I] \) the closed two-sided ideal generated by \(I \). Then \(A \) is *-isomorphic to \(L(H) \), for some Hilbert space \(H \), if and only if \(A \) is *-isomorphic to the second conjugate space of \([I] \) considered as a \(B^* \)-algebra with Arens product.

Proof. This follows from the proof above and [6, p. 248, Corollary (4.8.19)].

For another characterization of the algebra \(L(H) \), see [9, p. 537, Theorem 8].

Remark. We observe that the Hilbert space \(H \) in Theorem 3.3 as well as in Corollary 3.4 is essentially unique. For if \(L(H_1) \) is *-isomorphic to \(L(H_2) \), then \(H_1 \) is isometrically isomorphic to \(H_2 \). (See [9, p. 538].)

References

Department of Mathematics, University of Ottawa, Ottawa, Canada

Current address (Malviya): Department of Mathematics, North Texas State University, Denton, Texas 76203