AN ELEMENTARY PROOF OF A RADON-NIKODÝM THEOREM FOR FINITELY ADDITIVE SET FUNCTIONS

IAN PACHL

Abstract. In 1967 Charles Fefferman proved a Radon-Nikodym theorem for finitely additive measures. We give an elementary proof of a generalization of this theorem.

In this paper we give an elementary proof of the

Theorem. Let \(\mu, \gamma \) be real-valued bounded finitely additive set functions on an algebra \(\Sigma \) of subsets of the set \(S \). Then for every \(\epsilon > 0 \) there exists \(N \in \Sigma \) and a \(\mu \)-simple function \(f \) on \(S \) such that

\[
E \in \Sigma \\& E \subseteq N \Rightarrow |\mu_E| < \epsilon,
\]

\[
E \in \Sigma \\& E \subseteq S \setminus N \Rightarrow |\gamma_E - \int_E f \, d\mu| < \epsilon.
\]

(Hence there is a \(\mu \)-simple function \(g \) with \(E \in \Sigma \Rightarrow |\gamma_E - \gamma(E \cap N) - \int_E g \, d\mu| < \epsilon \).)

If \(\gamma \) is absolutely \(\mu \)-continuous (i.e., for every \(\epsilon > 0 \) there exists \(\delta > 0 \) such that \(|\mu_E| < \delta \Rightarrow |\gamma_E| < \epsilon \)), the Theorem reduces to a result of Fefferman which he proved using functional analysis (see Corollary).

Lemma 1 ("Weak Hahn decomposition"). Let \(\nu \) be a real-valued bounded finitely additive set function on an algebra \(\Sigma \subseteq \text{exp} \, S \). For every \(\alpha > 0 \) there is a \(B \in \Sigma \) (written \(B(\nu, \alpha) \)) such that

\[
E \in \Sigma \\& E \subseteq B \Rightarrow \nu_E > -\alpha, \quad E \in \Sigma \\& E \subseteq S \setminus B \Rightarrow \nu_E < \alpha.
\]

Proof. \(\nu \) is bounded and so there is a smallest natural number \(k \) with \(\nu \leq k \alpha \); for some \(B \in \Sigma \) we have \(\nu_B > k \alpha - \alpha \). If \(E \in \Sigma \) and \(E \subseteq B \), then \(\nu_E = \nu_B - \nu(B \setminus E) > k \alpha - \alpha - k \alpha = -\alpha \); if \(E \in \Sigma \) and \(E \subseteq S \setminus B \), then \(\nu_E = \nu(B \cup E) - \nu_B < k \alpha - (k \alpha - \alpha) = \alpha \).

Lemma 2 (cf. [2, §22.2], [1, Theorem 2]). Let \(\mu, \gamma \) be finite real-valued finitely additive set functions on an algebra \(\Sigma \subseteq \text{exp} \, S \). If there exists \(\delta > 0 \) such that \(\mu > -\delta / 2 \) and \(\gamma > -\delta / 2 \), then there exist \(N \in \Sigma \) and a \(\mu \)-simple function \(f \) on \(S \) such that

Received by the editors August 27, 1970.

AMS 1970 subject classifications. Primary 28-00, 28A25, 28A80.
\[E \in \Sigma \& E \subseteq N \Rightarrow |\mu E| < \delta, \]
\[E \in \Sigma \& E \subseteq S \setminus N \Rightarrow \gamma E - \int_E f \, d\mu < \delta. \]

Proof. Let \(m \) be an integer \(> 2(\gamma S + \delta)(\mu S + \delta)/\delta^2 \). Put

\[B_k = B \left(\gamma - \frac{\delta k}{2(\mu S + \delta)} , \frac{\delta}{2m} \right) \quad \text{(by Lemma 1)}, \]

\[A_1 = S \setminus \bigcup_{j=1}^{m} B_j, \quad A_k = B_{k-1} \setminus \bigcup_{j=k}^{m} B_j, \quad k = 2, 3, \ldots, m, \]

\[N = B_m, \quad f = \sum_{k=1}^{m} \frac{\delta(k-1)}{2(\mu S + \delta)} \chi_{A_k}, \]

where \(\chi_A \) is the characteristic function of \(A \). If \(E \in \Sigma \) and \(E \subseteq N \), then

\[\gamma E - \frac{\delta m}{2(\mu S + \delta)} \mu E > - \frac{\delta}{2m} \geq - \frac{\delta}{2}; \]

thus

\[\mu E < \frac{2}{m} \frac{\mu S + \delta}{\delta} \left(\gamma E + \frac{\delta}{2} \right) < \frac{\delta^2}{(\gamma S + \delta)(\mu S + \delta)} \frac{\mu S + \delta}{\delta} \times \left(\gamma S - \gamma(S|E) + \frac{\delta}{2} \right) < \frac{\delta}{\gamma S + \delta} \left(\gamma S + \gamma S + \frac{\delta}{2} + \frac{\delta}{2} \right) = \delta. \]

If \(E \in \Sigma \) and \(E \subseteq S \setminus N \), then \(E \) is the disjoint union of the sets \(E_1, \ldots, E_m \), where \(E_k = E \cap A_k \) for \(k = 1, 2, \ldots, m \). Moreover, since \(E_k \subseteq A_k \subseteq S \setminus B_k \), we have

\[\gamma E_k - \frac{\delta k}{2(\mu S + \delta)} \mu E_k < \frac{\delta}{2m} \quad \text{for } k = 1, 2, \ldots, m, \]

and since \(E_k \subseteq A_k \subseteq B_{k-1} \), we have

\[\gamma E_k - \frac{\delta(k-1)}{2(\mu S + \delta)} \mu E_k > - \frac{\delta}{2m} \quad \text{for } k = 2, \ldots, m. \]

Hence

\[-\delta < - \frac{\delta}{2} + (m-1) \left(- \frac{\delta}{2m} \right) \leq \sum_{k=1}^{m} \left(\gamma E_k - \frac{\delta(k-1)}{2(\mu S + \delta)} \mu E_k \right) \]

\[= \sum_{k=1}^{m} \left(\gamma E_k - \frac{\delta k}{2(\mu S + \delta)} \mu E_k \right) + \sum_{k=1}^{m} \frac{\delta}{2(\mu S + \delta)} \mu E_k \]

\[< m \frac{\delta}{2m} + \frac{\delta}{2} \frac{\mu E}{\mu S + \delta} < \delta. \]
Since $\sum_{k=1}^{m} (\gamma E_k - (\delta(k-1)/2(\mu S + \delta)) \mu E_k) = \gamma E - \int_E f \, d\mu$, Lemma 2 is proved.

Proof of the Theorem. Let $B=B(\mu, \varepsilon/8)$, $B'=B(\gamma, \varepsilon/8)$, $\mu_1 E = \mu(E \cap B)$, $\mu_2 E = -\mu(E \setminus B)$, $\gamma_1 E = \gamma(E \cap B')$ and $\gamma_2 E = -\gamma(E \setminus B')$ for $E \in \Sigma$ (so that $\mu = \mu_1 - \mu_2$ and $\gamma = \gamma_1 - \gamma_2$). Clearly $\mu_1 > -\varepsilon/8$ and $\gamma_1 > \varepsilon/8$ for $i=1, 2$. By Lemma 2 (with $\delta = \varepsilon/4$) for $i,j=1, 2$ there are sets $N_{i,j}$ and μ-simple functions $f_{i,j}$ such that

$$E \in \Sigma \land E \subseteq N_{i,j} \Rightarrow |\mu E| < \frac{\varepsilon}{4},$$

$$E \in \Sigma \land E \subseteq S \setminus N_{i,j} \Rightarrow |\gamma E - \int_E f_{i,j} \, d\mu| < \frac{\varepsilon}{4}.$$

Let $N = \bigcup_{i,j=1,2} N_{i,j}$ and $f = (f_{11} - f_{12}) \chi_B + (f_{21} - f_{22}) \chi_{S \setminus B}$. If $E \in \Sigma$ and $E \subseteq N$, then E is the disjoint union of sets $E_{i,j}$, $i,j=1, 2$, with $E_{i,j} \in \Sigma$ and $E_{i,j} \subseteq N_{i,j}$,

$$\mu E = \sum_{i,j=1,2} \mu E_{i,j} \quad \text{and} \quad -\varepsilon < 4 \cdot \left(-\frac{\varepsilon}{8} \right) = \sum_{i,j=1,2} \mu E_{i,j} < 4 \cdot \frac{\varepsilon}{4} = \varepsilon,$$

i.e., $|\mu E| < \varepsilon$. If $E \in \Sigma$ and $E \subseteq S \setminus N$, then $E \subseteq S \setminus N_{i,j}$ for $i,j=1, 2$; in addition $\mu_2(E \cap B) = \mu_2(E \setminus B) = 0$, and thus

$$|\gamma E - \int_E f \, d\mu| \leq |\gamma(E \cap B) - \int_{E \cap B} (f_{11} - f_{12}) \, d\mu|$$

$$+ |\gamma(E \setminus B) - \int_{E \setminus B} (f_{21} - f_{22}) \, d\mu|$$

$$\leq |\gamma_1(E \cap B) - \int_{E \cap B} f_{11} \, d\mu|$$

$$+ |\gamma_2(E \setminus B) - \int_{E \setminus B} f_{12} \, d\mu|$$

$$+ |\gamma_1(E \setminus B) - \int_{E \setminus B} f_{21} \, d\mu|$$

$$+ |\gamma_2(E \setminus B) - \int_{E \setminus B} f_{22} \, d\mu| < 4 \cdot \frac{\varepsilon}{4} = \varepsilon.$$

The Theorem is proved.

It is now easy to prove the

Corollary. Let μ, γ be bounded real-valued finitely additive set functions on an algebra $\Sigma \subseteq \exp S$. Let γ be absolutely μ-continuous (in the
sense mentioned above). Then for every $\varepsilon > 0$ there is a μ-simple function f such that

$$E \in \Sigma \Rightarrow \left| \gamma E - \int_E f \, d\mu \right| < \varepsilon.$$

As Fefferman [1, Lemma 1] has shown, it suffices to suppose that γ is finite (instead of bounded).

By the Corollary (if μ and γ satisfy its hypotheses), there is a sequence $\{f_n\}$ of μ-simple functions f_n with $\lim_{n \to \infty} \int_E f_n \, d\mu = \gamma E$ uniformly for $E \in \Sigma$ (it was in this form formulated in [1]).

The following example shows there need not be an increasing such sequence:

\mathcal{S} is the set of all natural numbers (≥ 1),
E is the algebra of all finite subsets of \mathcal{S} and their complements,

$$\gamma E = 0, \quad \mu E = \sum_{k \in E} 2^{-k} \quad \text{for finite } E,$$

$$\gamma E = 1, \quad \mu E = 1 + \sum_{k \in E} 2^{-k} \quad \text{for infinite } E.$$

References

Department of Mathematics, Charles University, Prague, Czechoslovakia